Answer:
To satisfy the hypotheses of the Mean Value Theorem a function must be continuous in the closed interval and differentiable in the open interval.
Step-by-step explanation:
As f(x)=2x3−3x+1 is a polynomial, it is continuous and has continuous derivatives of all orders for all real x, so it certainly satisfies the hypotheses of the theorem.
To find the value of c, calculate the derivative of f(x) and state the equality of the Mean Value Theorem:
dfdx=4x−3
f(b)−f(a)b−a=f'(c)
f(x)x=0=1
f(x)x=2=3
Hence:
3−12=4c−3
and c=1.
Answer:
c/16
Step-by-step explanation:
Idk what that answer is soooo
Answer:
a) see the plots below
b) f(x) is exponential; g(x) is linear (see below for explanation)
c) the function values are never equal
Step-by-step explanation:
a) a graph of the two function values is attached
__
b) Adjacent values of f(x) have a common ratio of 3, so f(x) is exponential (with a base of 3). Adjacent values of g(x) have a common difference of 2, so g(x) is linear (with a slope of 2).
__
c) At x ≥ 1, the slope of f(x) is greater than the slope of g(x), and the value of f(x) is greater than the value of g(x), so the curves can never cross for x > 1. Similarly, for x ≤ 0, the slope of f(x) is less than the slope of g(x). Once again, f(0) is greater than g(0), so the curves can never cross.
In the region between x=0 and x=1, f(x) remains greater than g(x). The smallest difference is about 0.73, near x = 0.545, where the slopes of the two functions are equal.