You want to compare the square root of 55 using "mental math". Start off by choosing two perfect squares that you can think of that are close to 55.
If you don't know perfect squares then start with the number 2 and multiply it by itself. 2 times 2 equals 4, so 4 is a perfect square.
Take the number 3, multiply it by itself, and so on. Do this for all the numbers until you find two perfect squares that are close to 55.
The two perfect squares closest to 55 are the square roots of 49 and 64. Find the square root of these numbers.
√49 = 7
√64 = 8
Calculate how far 55 is from 49 and 64. 55 is 6 digits away from 49 and 9 digits away from 64.
This means the square root of 55 will be closer to the square root of 49; 7. Since we know that it will be closer to 7, you can put the less than sign for your answer.
√55 < 7.7
(The actual square root of 55 is ~7.4, so we were correct in determining the answer without using a calculator!)
Hey There!!
The answer to this is: A quadrilateral has vertices A(3, 5), B(2, 0), C(7, 0), and D(8, 5). Which statement about the quadrilateral is true?" Line BC is parallel to line AD because their slopes is equal i.e. (0 - 0) / (7 - 2) = (5 - 5) / (8 - 3) which gives 0 / 5 = 0 / 5 giving that 0 = 0. We check whether line AB is parallel to line CD. Slope of line AB is given by (0 - 5) / (2 - 3) = -5 / -1 = 5. Slope of line CD is given by (5 - 0) / (8 - 7) = 5 / 1 = 5 We have been able to prove that the opposite sides of the quadrilateral are parallel which means that the quadrilateral is not a trapezoid. Next we check whether the length of the sides are equal. Length of line AB is given by sqrt[(0 - 5)^2 + (2 - 3)^2] = sqrt[(-5)^2 + (-1)^2] = sqrt(25 + 1) = sqrt(26) Length of line BC is given by sqrt[(0 - 0)^2 + (7 - 2)^2] = sqrt[0^2 + 5^2] = sqrt(25) = 5 Length of line CD is given by sqrt[(5 - 0)^2 + (8 - 7)^2] = sqrt[5^2 + 1^2] = sqrt(25 + 1) = sqrt(26) Length of line DA is given by sqrt[(5 - 5)^2 + (8 - 3)^2] = sqrt[0^2 + 5^2] = sqrt(25) = 5 Thus, the length of the sides of the quadrilateral are not equal but opposite sides are equal which means that the quadrilateral is not a rhombus. Finally, we check whether adjacent lines are perpendicular. Recall the for perpendicular lines, the product of their slopes is equal to -1. Slope of line AB = 5 while slope of line BC = 0. The product of their slopes = 5 x 0 = 0 which is not -1, thus the adjacent sides of the quadrilateral are not perpendicular which means that the quadrilateral is not a rectangle. Therefore, ABCD is a parallelogram with non-perpendicular adjacent sides. Thus, For (option A).
Hope It Helped!~ ♡
ItsNobody~ ☆
Let's look at it like this:
5/10+1/5 = (5/10) + (1/5)
5/10 = 0,5
1/5 = 0,2
so it's 5/10 + 1/5 = (5/10) + (1/5) = 0,5 + 0,2 = <u>0,7 </u>
Answer:
x = 159; y = 140
Step-by-step explanation:
a = 40
a + y = 180
y = 180 - 40
y = 140
b = 61
b = (180 - x) + a
61 = 180 - x + 40
x = 159
Answer:
A.
Step-by-step explanation:
Because they are both subtracting, both lines have to go to the left