Answer:
so ....where is the question?
Answer:
9.99
Step-by-step explanation:
A)
SLOPE OF f(x)
To find the slope of f(x) we pick two points on the function and use the slope formula. Each point can be written (x, f(x) ) so we are given three points in the table. These are: (-1, -3) , (0,0) and (1,3). We can also refer to the points as (x,y). We call one of the points

and another

. It doesn't matter which two points we use, we will always get the same slope. I suggest we use (0,0) as one of the points since zeros are easy to work with.
Let's pick as follows:


The slope formula is:
We now substitute the values we got from the points to obtain.

The slope of f(x) = 3
SLOPE OF g(x)
The equation of a line is y=mx+b where m is the slope and b is the y intercept. Since g(x) is given in this form, the number in front of the x is the slope and the number by itself is the y-intercept.
That is, since g(x)=7x+2 the slope is 7 and the y-intercept is 2.
The slope of g(x) = 2
B)
Y-INTERCEPT OF g(x)
From the work in part a we know the y-intercept of g(x) is 2.
Y-INTERCEPT OF f(x)
The y-intercept is the y-coordinate of the point where the line crosses the y-axis. This point will always have an x-coordinate of 0 which is why we need only identify the y-coordinate. Since you are given the point (0,0) which has an x-coordinate of 0 this must be the point where the line crosses the y-axis. Since the point also has a y-coordinate of 0, it's y-intercept is 0
So the function g(x) has the greater y-intercept
<u>Answer:</u>
Consistent and dependent
<u>Step-by-step explanation:</u>
We are given the following equation:
1. 
2. 
3. 
For equation 1 and 3, if we take out the common factor (3 and 4 respectively) out of it then we are left with
which is the same as the equation number 2.
There is at least one set of the values for the unknowns that satisfies every equation in the system and since there is one solution for each of these equations, this system of equations is consistent and dependent.
Since, each side of the fence should have the 1 3/4 feet wide decorative piece, the width of the fence should be subtracted by 2 pieces (1 3/4 feet)
= 26.5 feet
Then, divide the remaining width by 4.5 feet and the answer is 5.88. Thus, approximately 5 pieces of the 4 1/2 feet should be installed.