You want to know the factor by which 3 2/3 is multiplied to get 7 1/3.
1. You can estimate that it is 2 from 7/3 ≈ 2, then check by multiplication to see if that is right.
.. 2*(3 2/3) = 6 4/3 = 7 1/3 . . . . 2 is the correct factor.
2. You can divide 7 1/3 by 3 2/3 to see what the factor is.
.. (7 1/3)/(3 2/3) = (22/3)/(11/3) = 22/11 = 2 . . . . 2 is the factor Earl used.
3. You could see how many times you can subtract 3 2/3 from 7 1/3.
.. 7 1/3 -3 2/3 = (7 -3) +(1/3 -2/3) = 4 -1/3 = 3 2/3 . . . . . subtracting once gives 3 2/3
.. 3 2/3 -3 2/3 = 0 . . . . . . subtracting twice gives 0, so the factor is 2.
4. You could add 3 2/3 to see how many times it takes to get 7 1/3.
.. 3 2/3 +3 2/3 = (3 +3) +(2/3 +2/3) = 6 +4/3 = 7 1/3
We only need to add two values of 3 2/3 to get 7 1/3, so the factor is 2.
___
We have shown methods using multiplication, division, subtraction, addition. Take your pick.
<span>Yes, square root of 27 can be simplified
</span>
Answer:
10x+12 is the answer in my calculation.
Answer:
Let p represent the # of pages in the book. Then, Nora has already read 0.30p pages and has 0.70p pages left to read.
If she reads 25% pages/night, that means reading 0.25(0.70)p pages per night, or 17.5 pages/night. If 28% p/n, that means 0.28(0.70)p pages/night, or 19.6p pages/night.
How many nights will it take Nora to finish the book if she reads 25% of 7/10 of the book per night? Without any calculations, we can answer this by "4 nights, since she reads 1/4 of the unread portion of the book per night."
If she reads 28% of 7/10 of the book per night, that will require fewer nights:
First night: 28%
Second night: 28%
Third night: 28%
Total: 3(28%) = 84%
This leaves 16% to read on the final night.
This is one interpretation of what I think is a poorly worded question.
The author of this question might have meant reading 25% of the remaining unread pages per night, which leads to a different answer.