Answer:
where is the option I can't see plz give the option first the I try to give answer
Answer:
The most stable conformer would be the anti-conformer when the substituent methyl groups are farthest away from each other.
Explanation:
Isomers are chemical compounds with the same molecular formula but with different molecular structures.
Conformers are a special type of isomers that produce different structures when the substituents of a Carbon-Carbon single bond (C-C) are rotated.
In 2,3 dimethyl butane, the substituent methyl groups are located around the second and third Carbon to Carbon single bond.
To achieve a stable configuration, the methyl group substituents need to be as far apart as possible (that is, in an anti-position) to minimise repulsion.
The closer the methyl groups are to each other, the more they repel each other and the more unstable the conformer becomes.
I believe it is the sequence of amino acids in a protein
Answer:
2.06 × 10⁻¹⁰
Explanation:
Let's consider the solution of a generic compound AB₂.
AB₂(s) ⇄ A²⁺(aq) + 2B⁻(aq)
We can relate the molar solubility (S) with the solubility product constant (Kps) using an ICE chart.
AB₂(s) ⇄ A²⁺(aq) + 2B⁻(aq)
I 0 0
C +S +2S
E S 2S
The solubility product constant is:
Kps = [A²⁺] × [B⁻]² = S × (2S)² = 4 × S³ = 4 × (3.72 × 10⁻⁴)³ = 2.06 × 10⁻¹⁰