Answer:
750mmHg
Explanation:
The following data were obtained from the question:
T1 = 127°C = 127 +273 = 400K
T2 = 27°C = 27 +273 = 300K
P1 = 1000mmHg
P2 =?
P1/T1 = P2/T2
1000/400 = P2 /300
Cross multiply
400 x P2 = 1000 x 300
Divide both side by 400
P2 = (1000 x 300)/400
P2 = 750mmHg
Therefore, the new pressure after cooling is 750mmHg
Answer:
89 L
Explanation:
Step 1: Given data
- Initial pressure (P₁): 0.97 atm
- Initial volume (V₁): 105 L
- Initial temperature (T₁): 318 K
- Final pressure (P₂): 1.05 atm
- Final temperature (T₂): 293 K
Step 2: Calculate the final volume of the weather balloon
If we assume that the gas inside the balloon behaves as an ideal gas, we can calculate the final volume of the gas using the combined gas law.
P₁ × V₁ / T₁ = P₂ × V₂ / T₂
V₂ = P₁ × V₁ × T₂ / T₁ × P₂
V₂ = 0.97 atm × 105 L × 293 K / 318 K × 1.05 atm = 89 L
Answer:
(d)
Explanation:
Carbonyl group can be the placement of kerosene sugar
Answer:
5.5 L
Explanation:
Step 1: Given data
- Initial volume (V₁): 6.5 L
- Initial pressure (P₁): 840 mmHg
- Initial temperature (T₁): 84 °C
- Final pressure (P₂): 760 mmHg (standard pressure)
- Final temperature (T₂): 273.15 K (standard temperature)
Step 2: Convert T₁ to Kelvin
We will use the following expression.
K = °C + 273.15
K = 84 °C + 273.15 = 357 K
Step 3: Calculate the final volume of the gas
We will use the combined gas law.
P₁ × V₁ / T₁ = P₂ × V₂ / T₂
V₂ = P₁ × V₁ × T₂ / T₁ × P₂
V₂ = 840 mmHg × 6.5 L × 273.15 K / 357 K × 760 mmHg = 5.5 L