![\bf tan(x^o)=1.11\impliedby \textit{taking }tan^{-1}\textit{ to both sides} \\\\\\ tan^{-1}[tan(x^o)]=tan^{-1}(1.11)\implies \measuredangle x=tan^{-1}(1.11)](https://tex.z-dn.net/?f=%5Cbf%20tan%28x%5Eo%29%3D1.11%5Cimpliedby%20%5Ctextit%7Btaking%20%7Dtan%5E%7B-1%7D%5Ctextit%7B%20to%20both%20sides%7D%0A%5C%5C%5C%5C%5C%5C%0Atan%5E%7B-1%7D%5Btan%28x%5Eo%29%5D%3Dtan%5E%7B-1%7D%281.11%29%5Cimplies%20%5Cmeasuredangle%20x%3Dtan%5E%7B-1%7D%281.11%29)
plug that in your calculator, make sure the calculator is in Degree mode
Answer:
25% of 60 is 15
75% of 30 is 22.5
50% of 45.7 22.85
50% of 60 30
100% of 22.5 is 22.5
75% of 60 is 45
10% of 22.5 2.25
Step-by-step explanation:
Answer:
so what are u trying to say ,,!!!
Step-by-step explanation:
HAVE A NICE DAY
Answer:
By the Empirical Rule, in 99.7% of the games that Aubree bowls she scores between 148 and 232Step-by-step explanation:The Empirical Rule states that, for a normally distributed random variable:68% of the measures are within 1 standard deviation of the mean.95% of the measures are within 2 standard deviation of the mean.99.7% of the measures are within 3 standard deviations of the mean.In this problem, we have that:Mean = 190Standard deviation = 14Using the empirical rule, what percentage of the games that Aubree bowls does she score between 148 and 232?148 = 190 - 3*14So 148 is 3 standard deviations below the mean.232 = 190 + 3*14So 232 is 3 standard deviations above the meanBy the Empirical Rule, in 99.7% of the games that Aubree bowls she scores between 148 and 232