It depends on what type of transportation you would be using. If you were walking, it would be reeeaaaalllly slooowww. If a train, <em>much faster!</em>
3.14 is smaller. the more the decimal is to the right the larger the number is
Answer:
ρ_air = 0.15544 kg/m^3
Step-by-step explanation:
Solution:-
- The deflated ball ( no air ) initially weighs:
m1 = 0.615 kg
- The air is pumped into the ball and weight again. The new reading of the ball's weight is:
m2 = 0.624 kg
- The amount of air ( mass of air ) pumped into the ball can be determined from simple arithmetic between inflated and deflated weights of the ball.
m_air = Δm = m2 - m1
m_air = 0.624 - 0.615
m_air = 0.009 kg
- We are to assume that the inflated ball takes a shape of a perfect sphere with radius r = 0.24 m. The volume of the inflated ( air filled ) ball can be determined using the volume of sphere formula:
V_air = 4*π*r^3 / 3
V_air = 4*π*0.24^3 / 3
V_air = 0.05790 m^3
- The density of air ( ρ_air ) is the ratio of mass of air and the volume occupied by air. Expressed as follows:
ρ_air = m_air / V_air
ρ_air = 0.009 / 0.05790
Answer: ρ_air = 0.15544 kg/m^3
Answer:
Are the 1 and 7 rogether? because if so then -20, -2, 4, 16, 17, if not then -20, -2, 1, 4, 7, 16
Answer:
<em>The height of the bullding is 717 ft</em>
Step-by-step explanation:
<u>Right Triangles</u>
The trigonometric ratios (sine, cosine, tangent, etc.) are defined as relations between the triangle's side lengths.
The tangent ratio for an internal angle A is:

The image below shows the situation where Ms. M wanted to estimate the height of the Republic Plaza building in downtown Denver.
The angle A is given by his phone's app as A= 82° and the distance from her location and the building is 100 ft. The angle formed by the building and the ground is 90°, thus the tangent ratio must be satisfied. The distance h is the opposite leg to angle A and 100 ft is the adjacent leg, thus:

Solving for h:

Computing:
h = 711.5 ft
We must add the height of Ms, M's eyes. The height of the building is
711.5 ft + 5 ft = 716.5 ft
The height of the building is 717 ft