Answer: It's a tie between f(x) and h(x). Both have the same max of y = 3
The highest point shown on the graph of f(x) is at (x,y) = (pi,3). The y value here is y = 3.
For h(x), the max occurs when cosine is at its largest: when cos(x) = 1.
So,
h(x) = 2*cos(x)+1
turns into
h(x) = 2*1+1
h(x) = 2+1
h(x) = 3
showing that h(x) maxes out at y = 3 as well
--------------------------------
Note: g(x) has all of its y values smaller than 0, so there's no way it can have a max y value larger than y = 3. See the attached image to see what this graph would look like if you plotted the 7 points. A parabola seems to form. Note how point D = (-3, -2) is the highest point for g(x). So the max for g(x) is y = -2
Q6.
The slope-intercept form: y = mx + b
m - slope
b - y-intercept
We have: slope m = 3, y-intercept (0, 4) → b= 4
<h3>Answer: y = 3x + 4</h3>
Q7.
2x + 4y = 4 |subtract 2x from both sides
4y = -2x + 4 |divide both sides by 4
y = -0.5x + 1
Only second graph has y-intercept = 1.
<h3>Answer: The second graph.</h3>
Q8.
The point-slope form:

We have

Substitute:

<h3>Answer: The first equation.</h3>
Q9.
It's a vertical line. The equation of a vertical line is x = <em>a</em>, where <em>a</em> is any real number.
<h3>Answer: x = -4</h3>
Answer:
slope of CE is 2/3
Step-by-step explanation:
used the slope formula: change in y-values / change in x-values
Answer: √14 =3.74, which is not an integer and therefore is an irrational number.
Step-by-step explanation: