First you need to find the r, if C=2pieR, than 2.4=2pieR now you divide 2.4 by 2 so you got 1.2=pieR now you divide 1.2 by pie and obtained aproximately 0.38 miles, that is your R, now you do pie multiply by 0.38 exposant 2 and there you go, your answer is aproximately 0.45 miles2 :)
Answer:
16) 
17) y = -x - 4
18) y = -2x - 1
19) y = -2x
20)
Step-by-step explanation:
With the two points you find the slope using 
Then using that slope, plug the slope in with one of the points values of x and y into the point slope formula, and smiplify that into the y-intercept formula.
Compute successive differences of the terms.
If they are all the same, the sequence is arithmetic and the common difference is the difference you have found.
If successive pairs of differences have the same ratio, the sequence is geometric and the common ratio is the ratio you have determined.
Example of arithmetic sequence:
1, 3, 5, 7
Successive differences are 3-1 = 2, 5-3 = 2, 7-5 = 2. All the differences are 2, which is the common difference of the sequence.
Example of geometric sequence:
1, -3, 9, -27
Successive differences are -3-1 = -4, 9-(-3) = 12, -27-9 = -36. These are not the same, so the sequence is not arithmetic. Ratios of successive pairs of differences are 12/-4 = -3, -36/12 = -3. These are the same, so the sequence is geometric with common ratio -3.
Answer:
Original position: base is 1.5 meters away from the wall and the vertical distance from the top end to the ground let it be y and length of the ladder be L.
Step-by-step explanation:
By pythagorean theorem, L^2=y^2+(1.5)^2=y^2+2.25 Eq1.
Final position: base is 2 meters away, and the vertical distance from top end to the ground is y - 0.25 because it falls down the wall 0.25 meters and length of the ladder is also L.
By pythagorean theorem, L^2=(y -0.25)^2+(2)^2=y^2–0.5y+ 0.0625+4=y^2–0.5y+4.0625 Eq 2.
Equating both Eq 1 and Eq 2: y^2+2.25=y^2–0.5y+4.0625
y^2-y^2+0.5y+2.25–4.0625=0
0.5y- 1.8125=0
0.5y=1.8125
y=1.8125/0.5= 3.625
Using Eq 1: L^2=(3.625)^2+2.25=15.390625, L=(15.390625)^1/2= 3.92 meters length of ladder
Using Eq 2: L^2=(3.625)^2–0.5(3.625)+4.0625
L^2=13.140625–0.90625+4.0615=15.390625
L= (15.390625)^1/2= 3.92 meters length of ladder
<em>hope it helps...</em>
<em>correct me if I'm wrong...</em>