Answer:
1.4 m/s/s (2.s.f)
Explanation:
The formula for centripetal acceleration is:
, where v is velocity and r is the radius.
In the question we are given the information that the car has a mass of 1300kg, a velocity of 2.5m/s, and a turn radius of 8.5m which are all the values we need. Therefore we can simply substitute in the values to solve the question:

Therefore the centripetal acceleration of the car is 1.4m/s/s. (2.s.f)
Hope this helped!
Answer
4
Explanation:
four rays can also explain the ray diagram if the object is at infinity
Answer:
19.2*10^6 s
Explanation:
The equation for time dilation is:

Then, if it is observed to have a life of 6*10^6 s, and it travels at 0.95 c:

It has a lifetime of 19.2*10^6 s when observed from a frame of reference in which the particle is at rest.
Answer:
C) is zero
Explanation:
According to the law of energy conservation, the total mechanical energy of the object is conserved. A book falling a distance d would have a change in potential energy, resulting in the same change in kinetic energy. But the total mechanical energy must be the same. So there's 0 change in total energy of the system.
Answer:
https://gml.noaa.gov/education/info_activities/pdfs/LA_radiation.pdf
Explanation: