1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
solong [7]
3 years ago
8

An ostrich can run at a speed of 43 mi/hr. How much ground can an ostrich cover if it runs at this speed for 15 minutes? (Hint:

15 minutes = 0.25 hours)
Physics
1 answer:
Simora [160]3 years ago
4 0
..... It would possibly she eenejjsjejeej 1.4
You might be interested in
A car starts from rest and after 20 seconds it's velocity becomes 108km find the acceleration of the car
andre [41]

Answer:

1.5 km/s²

Explanation:

Given that:

a car starts from rest; it means the initial velocity (u) = 0 km/hr = 0 m/s

after time (t) = 20 seconds

the final velocity = 108 km/hr = 30 m/s

The acceleration (a) of the car can be determined by using the formula:

a = \dfrac{v-u}{t}

a = \dfrac{30\  m/s -0 \ m/s}{20 \ s}

a = \dfrac{30 \  m/s}{20 \ s}

a = 1.5 km/s²

7 0
3 years ago
A 32-kg child decides to make a raft out of empty 1.0-L soda bottles and duct tape. Neglecting the mass of the duct tape and pla
Vedmedyk [2.9K]

Answer:

32 bottles

Explanation:

If we create a free body diagram on the child we have his weight and the bouyant force

W-B=0

They must be equal to mantain equilibrium on the body and he can stay floating, this force is equivalent to the weight of water displaced

W=B=Ww

Mg=mg

32 kg=mass of water displaced

1 kilogram per liter (kg/L) is the density of water, this means that 32 Liters of water are displaced and since the bottles can retain 1 liter, the child needs 32 bottles

6 0
3 years ago
One of the main factors driving improvements in the cost and complexity of integrated circuits (ICs) is improvements in photolit
nika2105 [10]

Answer:

0.000003782 m

0.000001891 m

0.000001197125 m

Explanation:

\lambda = Wavelength = 248 nm

D = Diameter of beam = 1 cm

f = Focal length = 0.625 cm

The angle is given by

\theta=\dfrac{1.22\lambda}{D}

The width is given by

d=2\theta f\\\Rightarrow d=2\dfrac{1.22\lambda f}{D}\\\Rightarrow d=2\dfrac{1.22\times 248\times 10^{-9}\times 6.25\times 10^{-2}}{1\times 10^{-2}}\\\Rightarrow d=0.000003782\ m

The required width is 0.000003782 m

Minimum resolvable line separation is given by

\dfrac{0.000003782}{2}=0.000001891\ m

The minimum resolvable line separation between adjacent lines is 0.000001891 m

when \lambda=157\ nm

d=2\dfrac{1.22\times 157\times 10^{-9}\times 6.25\times 10^{-2}}{1\times 10^{-2}}\\\Rightarrow d=0.00000239425\ m

The new minimum resolvable line separation between adjacent lines is

\dfrac{0.00000239425}{2}=0.000001197125\ m

6 0
3 years ago
A steel wire of length 31.0 m and a copper wire of length 17.0 m, both with 1.00-mm diameters, are connected end to end and stre
Brut [27]

Answer:

The time taken is  t =  0.356 \ s

Explanation:

From the question we are told that

  The length of steel the wire is  l_1  = 31.0 \ m

   The  length of the  copper wire is  l_2  = 17.0 \ m

    The  diameter of the wire is  d =  1.00 \ m  =  1.0 *10^{-3} \ m

     The  tension is  T  =  122 \ N

     

The time taken by the transverse wave to travel the length of the two wire is mathematically represented as

              t  =  t_s  +  t_c

Where  t_s is the time taken to transverse the steel wire which is mathematically represented as

         t_s  = l_1 *  [ \sqrt{ \frac{\rho * \pi *  d^2 }{ 4 *  T} } ]

here  \rho_s is the density of steel with a value  \rho_s  =  8920 \ kg/m^3

   So

      t_s  = 31 *  [ \sqrt{ \frac{8920 * 3.142*  (1*10^{-3})^2 }{ 4 *  122} } ]

      t_s  = 0.235 \ s

 And

        t_c is the time taken to transverse the copper wire which is mathematically represented as

      t_c  = l_2 *  [ \sqrt{ \frac{\rho_c * \pi *  d^2 }{ 4 *  T} } ]

here  \rho_c is the density of steel with a value  \rho_s  =  7860 \ kg/m^3

 So

      t_c  = 17 *  [ \sqrt{ \frac{7860 * 3.142*  (1*10^{-3})^2 }{ 4 *  122} } ]

      t_c  =0.121

So  

   t  = t_c  + t_s

    t =  0.121 + 0.235

    t =  0.356 \ s

4 0
3 years ago
If a person is 6.25 m away from a 60.0 w speaker, what is the sound level they are hearing?
vodka [1.7K]

Answer:

110.87 dB

Explanation:

(I got it right on Acellus)

I= P/4(pi)r^2 = 60/4(pi)6.25^2

60/4(pi)6.25^2=0.12223

B=10log(I/Io)

B=10log(0.12223/1*10^-12) = 110.87 dB

111 in sigfigs

4 0
2 years ago
Read 2 more answers
Other questions:
  • A 7.00- kg bowling ball moves at 3.00 m/s. How fast musta
    6·1 answer
  • How large an expansion gap should be left between steel railroad rails if they may reach a maximum temperature 36.0°C greater th
    15·1 answer
  • Superconductors have no measurable resistance. true or false?
    12·1 answer
  • What is the equation for electric potential
    5·1 answer
  • 2 examples of balanced forces
    6·1 answer
  • 50 POINTS!!!!!
    13·1 answer
  • What has a positive charge a comb or rubber band?
    6·2 answers
  • ANSWER ASAP GIVING BRAINLIEST AND OTHER STUFF!
    14·1 answer
  • Please help with this diagram as soon as possible.
    12·1 answer
  • Over time Pangaea broke apart to form other continents.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!