Answer:
0.06 Kg
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 0 m/s
Final velocity (v) = 3.0 m/s
Distance (s) = 0.09 m
Net Force (F) = 3 N
Mass (m) =?
Next, we shall determine the acceleration of the object. This can be obtained as follow:
Initial velocity (u) = 0 m/s
Final velocity (v) = 3.0 m/s
Distance (s) = 0.09 m
Acceleration (a) =?
v² = u² + 2as
3² = 0² + (2 × a × 0.09)
9 = 0 + 0.18a
9 = 0.18a
Divide both side by 0.18
a = 9 / 0.18
a = 50 m/s²
Finally, we shall determine the mass of the object. This can be obtained as follow:
Net Force (F) = 3 N
Acceleration (a) = 50 N
Mass (m) =?
F = ma
3 = m × 50
Divide both side by 50
m = 3 / 50
m = 0.06 Kg
Therefore, the mass of the object is 0.06 Kg
we have to use newtons law of gravitation which is
F=GMm/r^2
G=6.67 x 10^<span>-11N kg^2/m^2
</span>M=<span>(15kg)
</span>m=15 kg
r=(3.0m)^2<span>
</span>putting values we have
<span>=(6.67 x 10^-11N kg^2/m^2)(15kg)(15kg)/(3.0m)^2 </span>
=1.67 x 10^-9N
Answer:
Explanation:
A and B are in series , Total resistance = Ra + Rb
This resistance is in parallel with single resistor C
Equivalent resistance Re = Rc x ( Ra + Rb ) / [Rc + ( Ra + Rb )]
Now this combination is in series in single resistance D .
Total resistance = Rd + Re
= Rd + { Rc x ( Ra + Rb ) / [Rc + ( Ra + Rb )] }