Answer:
1. reflection across x-axis
2. translation 6 units to the right and 3 units up (x+6,y+3)
Step-by-step explanation:
The trapezoid ABCD has it vertices at points A(-5,2), B(-3,4), C(-2,4) and D(-1,2).
First transformation is the reflection across the x-axis with the rule
(x,y)→(x,-y)
so,
- A(-5,2)→A'(-5,-2)
- B(-3,4)→B'(-3,-4)
- C(-2,4)→C'(-2,-4)
- D(-1,2)→D'(-1,-2)
Second transformation is translation 6 units to the right and 3 units up with the rule
(x,y)→(x+6,y+3)
so,
- A'(-5,-2)→E(1,1)
- B'(-3,-4)→H(3,-1)
- C'(-2,-4)→G(4,-1)
- D'(-1,-2)→F(5,1)
Each cow eats 12 pounds then 24 will eat 288 pounds so to know how many days it will last we will divide 10656 by 288 which is 37
so it will last for 37 days.
In the standard form of the equation
![\\ \ f(t)=Acos[b(t\pm c)]+k\\ \\](https://tex.z-dn.net/?f=%20%5C%5C%20%5C%20f%28t%29%3DAcos%5Bb%28t%5Cpm%20c%29%5D%2Bk%5C%5C%20%5C%5C%20)
The middle line =k
For our given problem
f(t) = 40cos (80t + 20)
On comparison we get k=0
Hence middle line=0
Answer:
10.7
Step-by-step explanation: