Answer:
if the which coduct salt has more density so the egg floats .
Explanation:
Answer:
Explanation:
In an experimental research, the control group is the group that serves as the neutral group that is not given any form of treatment and serves as the group in which the experimental groups are firstly compared to. Thus, <u>the control group in the question described is the Third group</u>.
While experimental groups are the groups that receive treatments required to make an inference from the experiment. From this description, <u>it can be deduced that the First and the Second group are the experimental groups.</u>
Answer:
Explanation:
To find the angular velocity of the tank at which the bottom of the tank is exposed
From the information given:
At rest, the initial volume of the tank is:

where;
height h which is the height for the free surface in a rotating tank is expressed as:

at the bottom surface of the tank;
r = 0, h = 0
∴
0 = 0 + C
C = 0
Thus; the free surface height in a rotating tank is:

Now; the volume of the water when the tank is rotating is:
dV = 2π × r × h × dr
Taking the integral on both sides;

replacing the value of h in equation (2); we have:


![V_f = \dfrac{ \pi \omega ^2}{g} \Big [ \dfrac{r^4}{4} \Big]^R_0](https://tex.z-dn.net/?f=V_f%20%3D%20%5Cdfrac%7B%20%5Cpi%20%5Comega%20%5E2%7D%7Bg%7D%20%5CBig%20%5B%20%20%5Cdfrac%7Br%5E4%7D%7B4%7D%20%5CBig%5D%5ER_0)
![V_f = \dfrac{ \pi \omega ^2}{g} \Big [ \dfrac{R^4}{4} \Big] --- (3)](https://tex.z-dn.net/?f=V_f%20%3D%20%5Cdfrac%7B%20%5Cpi%20%5Comega%20%5E2%7D%7Bg%7D%20%5CBig%20%5B%20%20%5Cdfrac%7BR%5E4%7D%7B4%7D%20%5CBig%5D%20---%20%283%29)
Since the volume of the water when it is at rest and when the angular speed rotates at an angular speed is equal.
Then 
Replacing equation (1) and (3)






Finally, the angular velocity of the tank at which the bottom of the tank is exposed = 10.48 rad/s
Weight = (mass) x (gravity)
Acceleration of gravity on Earth = 9.8 m/s²
Weight on Earth = (mass) x (9.8 m/s²)
Divide each side by (9.8 m/s²): Mass = (weight) / (9.8 m/s²)
Mass = (650 N) / (9.8 m/s²)
Mass = 66.33 kg (rounded)