Answer:Esotericism
Explanation:
it’s something that’s in intentional out of body experience
Ignoring air resistance, the Kinetic energy before hitting the ground will be equal to the potential energy of the Piton at the top of the rock.
So we have 1/2 MV^2 = MGH
V^2 = 2GH
V = âš2GH
V = âš( 2 * 9.8 * 325)
V = âš 6370
V = 79.81 m/s
Answer:
B = 4.059 x 10¹⁵ T
Explanation:
Given,
Number of loop, N = 400
radius of loop, r = 0.65 x 10⁻¹⁵ m
Current, I = 1.05 x 10⁴ A
Magnetic field at the center of the loop


B = 4.059 x 10¹⁵ T
It's weird but technically correct to say that a radio wave can be considered a low-frequency light wave. Radio and light are both electromagnetic waves. The only difference is that radio waves have much much much longer wavelengths, and much much much lower frequencies, than light waves have. But they're both the same physical phenomenon.
However, a radio wave CAN'T also be considered to be a sound wave. These two things are as different as two waves can be.
-- Radio is an electromagnetic wave. Sound is a mechanical wave.
-- Radio waves travel more than 800 thousand times faster than sound waves do.
-- Radio waves are transverse waves. Sound waves are longitudinal waves.
-- Radio waves can travel through empty space. Sound waves need material stuff to travel through.
-- Radio waves can be detected by radio, TV, and microwave receivers. Sound waves can't.
-- Sound waves can be detected by our ears. Radio waves can't.
-- Sound waves can be generated by talking, or by hitting a frying pan with a spoon. Radio waves can't.
-- Radio waves can be generated by an alternating current flowing through an isolated wire. Sound waves can't.
Answer:
≈ 2.1 R
Explanation:
The moment of inertia of the bodies can be calculated by the equation
I = ∫ r² dm
For bodies with symmetry this tabulated, the moment of inertia of the center of mass
Sphere
= 2/5 M R²
Spherical shell
= 2/3 M R²
The parallel axes theorem allows us to calculate the moment of inertia with respect to different axes, without knowing the moment of inertia of the center of mass
I =
+ M D²
Where M is the mass of the body and D is the distance from the center of mass to the axis of rotation
Let's start with the spherical shell, axis is along a diameter
D = 2R
Ic =
+ M D²
Ic = 2/3 MR² + M (2R)²
Ic = M R² (2/3 + 4)
Ic = 14/3 M R²
The sphere
Is =
+ M [
²
Is = Ic
2/5 MR² + M
² = 14/3 MR²
² = R² (14/3 - 2/5)
= √ (R² (64/15)
= 2,066 R