Answer:
8.4 N/m
Explanation:
m = Mass of block = 4.63 gm
g = Acceleration due to gravity = 
x = Displacement of spring = 0.45 cm
a = Acceleration of subject = 0.832g
k = Spring constant
Force is given by

From Hooke's law

So

The force constant of the spring is 8.4 N/m.
Answer:
Scientists who study the Sun usually divide it up into three main regions: the Sun's interior, the solar atmosphere, and the visible "surface" of the Sun which lies between the interior and the atmosphere. There are three main parts to the Sun's interior: the core, the radiative zone, and the convective zone.
Explanation:
Hopefully this helps :)
Answer:
a ) 
b) 
Explanation:
given data:
pressure ration rp = 12
inlet temperature = 300 K
TURBINE inlet temperature = 1000 K
AT the end of isentropic process (compression) temperature is



AT the end of isentropic process (expansion) temperature is



isentropic work is given as

w = 1.005(610.18 - 300)
w = 311.73 kJ/kg
w(turbine) = 1.005( 1000 - 491.66)
w(turbine) = 510.88 kJ/kg
a) mass flow rate for isentropic process is given as


b) actual mass flow rate uis given as


Answer:
357.6g
Explanation:
Given parameters:
Density = 12.459g/cm³
Volume of metal = 28.7cm³
Unknown:
Mass of metal = ?
Solution:
The density of a substance is its mass per unit volume.
To find the mass;
Mass of metal = density x volume
Now insert the parameters and solve;
Mass of metal = 12.459 x 28.7 = 357.6g
The initial position of the object was found to be 134.09 m.
<u>Explanation:</u>
As displacement is the measure of difference between the final and initial points. In other words, we can say that displacement can be termed as the change in the position of the object irrespective of the path followed by the object to change the path. So
Displacement = Final position - Initial position.
As the final position is stated as -55.25 meters and the displacement is also stated as -189.34 meters. So the initial position will be
Initial position of the object = Final position-Displacement
Initial position = -55.25 m - (-189.34 m) = -55.25 m + 189.34 m = 134.09 m.
Thus, the initial position for the object having a displacement of -189.34 m is determined as 134.09 m.