Answer:
A) 21/7, or 3
B) 36/5, or 7 1/5
C) 35/25, or 1 15/25, or 1 3/5
D) 54/12, or 4 6/12, or 4 1/2
Step-by-step explanation:
8/7 plus 13/7. You add the numerators (the numbers on top) together. That makes 21. The denominator (the numbers on bottom) stays the same. So it would be 21/7. 7 fits into 21, 3 times.
8/7 más 13/7. Agrega los numeradores (los números en la parte superior) juntos. Eso hace 21. El denominador (los números en la parte inferior) permanece igual. Entonces sería 21/7. 7 encaja en 21, 3 veces.
8/7 plus 13/7. Vous ajoutez les numérateurs (les chiffres du haut) ensemble. Cela fait 21. Le dénominateur (les chiffres du bas) reste le même. Donc, ce serait 21/7. 7 correspond à 21, 3 fois.
8/7 plus 13/7. Quarum numeratores addere (supra de numero) una. 21. Quod facit denominator est (per numeros in fundo) manebit. Ita esset 21/7. Vicium, in VII XXI, III tempora.
Answer
N-9=-18
Move the -9 to -18 and add those cuz if there’s two negative u have to add
Add 9
Answer:
A salad costs $2.50
A sandwich costs $4.50
A drink costs $1.25
Step-by-step explanation:
Let x represent the salad, y represent the sandwich, and z represent the drink.
Since three salads, two sandwiches, and one drink cost $17.75:
3x + 2y + z = 17.75 (1)
Since one salad, one sandwich, and three drinks cost $10.75:
x + y + 3z = 10.75 (2)
Since a salad costs twice as much as a drink:
x = 2z (3)
Multiply the equation 2 by -2 then, sum the equation 1 and equation 2:
-2x - 2y - 6z = -21.50
3x + 2y + z = 17.75
→ x - 5z = -3.75
Replace the x with 2z using equation 3:
2z - 5z = -3.75
-3z = -3.75
z = 1.25
x = 2z → x = 2.50
x + y + 3z = 10.75 → 2.50 + y + 3.75 = 10.75 → y + 6.25 = 10.75 → y = 4.50
Answer:
I dunno
Step-by-step explanation:
You cant see the words lol
Answer:
The average distance of each observation from the mean is 0.
Step-by-step explanation:
We are given the following in the question:
$7, $20, $9, $35, $12, $15, $7, $10, $20, $25
Formula:

Difference from the mean value of each term:
-9, 4, -7, 19, -4, -1, -9, -6, 4, 9
Average distances =

Thus, the average distance of each observation from the mean is 0.