1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vera_Pavlovna [14]
3 years ago
10

Lim x-->0 ((sqrt(ax+b) -2) / x) =1 show steps....

Mathematics
1 answer:
Andrew [12]3 years ago
4 0
Lim x→0 (√(ax+b)-2)/x=1

You want to know the value of "a" and "b"

lim x→0  (√(ax+b)-2)/x=(√(0+b)-2)/0=(√b -2)/0;

Then if (√b -2)/0=1; the numerator must be "0"
(√b-2)=0
√b=2
(√b)²=2²
b=4

It is necessary the numerator must be "0", if the denominator is "0" and the result is equal a number.

Therefore:
lim     (√(ax+4)-2)/x=1
x⇒0

I imagine you know Taylor Series.
√(ax+4)=(4(1+ax/4))¹/²=2(1+ax/4)¹/²
Remember:
               (1/2)   
(1+x)ᵃ=<span>Σ ( a  ) x^a
</span>
In our case:
                   (1/2)             (1/2)              (1/2)
(1+ax/4)¹/²=(   0) (ax/4)⁰+(  1 ) (ax/4)¹+(   2) (ax/4)²+...
                =1 +(1/2) ax/4 + -1/8 (ax/4)²+...
                =1+ax/8-a²x²/128+...

Therefore:
lim     (√(ax+4)-2)/x=lim       [2(1+ax/8-a²x²/128+...)-2]/x=
x⇒0                          x⇒0 

lim       [(2+ax/4-a²x²/64+...)-2]/x=
x⇒0 

lim      (ax/4-a²x²/64+...)/x=
x⇒0

lim   x(a/4-a²x/64+...)/x=
x⇒0

lim    (a/4-a²x/64+...)=(a/4-0-0-0-...)=4/a
x⇒0

Because:

lim     (√(ax+4)-2)/x=1
x⇒0

Then:
4/a=1 ⇒  a=4

Answer: a=4; b=4
You might be interested in
Bevil and sona each got a big cookie.Sona gave Alfredo half her cookie,Bevil gave Alfredo one-third of his cookie. What fraction
Nikolay [14]
Alfredo got 1/6th of the Cookie
6 0
4 years ago
How do you prove cotx/(cscx-sinx)=secx
Lelechka [254]
\dfrac{\cot x}{\csc x-\sin x}=\dfrac{\frac{\cos x}{\sin x}}{\frac{1}{\sin x}-\sin x}=&#10;\dfrac{\frac{\cos x}{\sin x}}{\frac{1}{\sin x}-\frac{\sin^2x}{\sin x}}=&#10;\dfrac{\frac{\cos x}{\sin x}}{\frac{1-\sin^2x}{\sin x}}=\\\\\\=&#10;\dfrac{\frac{\cos x}{\sin x}}{\frac{\cos^2x}{\sin x}}=\dfrac{\cos x\cdot\sin x}{\sin x\cdot\cos^2x}=\dfrac{1}{\cos x}=\boxed{\sec x}
6 0
4 years ago
Select Is a Function or Is not a Function to correctly classify each relation
Gemiola [76]

Answer:

no

yes

no

yes

Step-by-step explanation:

x input repeats - 3

x input doesn't repeat

x input repeats -4

x input doesn't repeat

6 0
3 years ago
HELP ME PLEASE!!! I’ll mark brainly
mixas84 [53]

Answer:

yes

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Determine whether each of the following functions is a solution of laplace's equation uxx uyy = 0.
ratelena [41]

Both functions are the solution to the given Laplace solution.

Given Laplace's equation: u_{x x}+u_{y y}=0

  • We must determine whether a given function is the solution to a given Laplace equation.
  • If a function is a solution to a given Laplace's equation, it satisfies the solution.

(1) u=e^{-x} \cos y-e^{-y} \cos x

Differentiate with respect to x as follows:

u_x=-e^{-x} \cos y+e^{-y} \sin x\\u_{x x}=e^{-x} \cos y+e^{-y} \cos x

Differentiate with respect to y as follows:

u_{x x}=e^{-x} \cos y+e^{-y} \cos x\\u_{y y}=-e^{-x} \cos y-e^{-y} \cos x

Supplement the values in the given Laplace equation.

e^{-x} \cos y+e^{-y} \cos x-e^{-x} \cos y-e^{-y} \cos x=0

The given function in this case is the solution to the given Laplace equation.

(2) u=\sin x \cosh y+\cos x \sinh y

Differentiate with respect to x as follows:

u_x=\cos x \cosh y-\sin x \sinh y\\u_{x x}=-\sin x \cosh y-\cos x \sinh y

Differentiate with respect to y as follows:

u_y=\sin x \sinh y+\cos x \cosh y\\u_{y y}=\sin x \cosh y+\cos x \sinh y

Substitute the values to obtain:

-\sin x \cosh y-\cos x \sinh y+\sin x \cosh y+\cos x \sinh y=0
The given function in this case is the solution to the given Laplace equation.

Therefore, both functions are the solution to the given Laplace solution.

Know more about Laplace's equation here:

brainly.com/question/14040033

#SPJ4

The correct question is given below:
Determine whether each of the following functions is a solution of Laplace's equation uxx + uyy = 0. (Select all that apply.) u = e^(−x) cos(y) − e^(−y) cos(x) u = sin(x) cosh(y) + cos(x) sinh(y)

6 0
2 years ago
Other questions:
  • 7y-3x= -5 solve for x
    14·1 answer
  • I need help with this question please.
    8·1 answer
  • Which value of x makes the following equation true? <br> 6(x - 1) = -2x + 50
    11·1 answer
  • Kristen spent $165 on shirts. Fancy shirts cost $15 and plain shirts cost $10. If she bought a
    10·1 answer
  • - 7th Grade Work -<br><br> Please write an equation.
    14·1 answer
  • A mailbox that is feet tall casts a shadow that is 6 feet long. At the same time, a nearby ferris wheel casts a shadow 84 feet l
    7·1 answer
  • Round your answer to the nearest hundredth.
    10·2 answers
  • Create an equation given the slope is -7 and a point (5,8)
    8·1 answer
  • Surface area,<br>pls help ​
    6·1 answer
  • A manufacturer of window frames knows from long experience that 5 percent of the production will have some type of minor defect
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!