Answer: 330.88 J
Explanation:
Given
Linear velocity of the ball, v = 17.1 m/s
Distance from the joint, d = 0.47 m
Moment of inertia, I = 0.5 kgm²
The rotational kinetic energy, KE(rot) of an object is given by
KE(rot) = 1/2Iw²
Also, the angular velocity is given
w = v/r
Firstly, we calculate the angular velocity. Since it's needed in calculating the Kinetic Energy
w = v/r
w = 17.1 / 0.47
w = 36.38 rad/s
Now, substituting the value of w, with the already given value of I in the equation, we have
KE(rot) = 1/2Iw²
KE(rot) = 1/2 * 0.5 * 36.38²
KE(rot) = 0.25 * 1323.5
KE(rot) = 330.88 J
<h2>
Speed of motorboat is 36 km/hr and speed of current is 4 km/hr.</h2>
Explanation:
Let speed of motor boat be m and speed of current be c.
A motorboat traveling with a current can go 160 km in 4 hours.
Distance = 160 km
Time = 4 hours
Speed = m + c
We have
Distance = Speed x Time
160 = (m+c) x 4
m + c = 40 --------------------- eqn 1
Against the current it takes 5 hours to go the same distance.
Distance = 160 km
Time = 5 hours
Speed = m - c
We have
Distance = Speed x Time
160 = (m-c) x 5
m - c = 32 --------------------- eqn 2
eqn 1 + eqn 2
2m = 40 + 32
m = 36 km/hr
Substituting in eqn 1
36 + c = 40
c = 4 km/hr
Speed of motorboat is 36 km/hr and speed of current is 4 km/hr.
Answer:

Explanation:
<u>Density
</u>
The density of a substance is the mass per unit volume. The density varies with temperature and pressure.
The formula to calculate the density of a substance of mass (m) and volume (V) is:

We have a cube-shaped piece of copper of 4 cm of side length. The volume of the piece is:

Surprisingly, no other magnitude is required, thus the answer is:

The two wires carry current in opposite directions: this means that if we see them from above, the magnetic field generated by one wire is clock-wise, while the magnetic field generated by the other wire is anti-clockwise. Therefore, if we take a point midway between the two wires, the resultant magnetic field at this point is just the sum of the two magnetic fields, since they act in the same direction.
Therefore, we should calculate the magnetic field generated by each wire and then calculate their sum. We are located at a distance r=0.10 m from each wire.
The magnetic field generated by wire 1 is:

The magnetic field generated by wire 2 is:

And so, the resultant magnetic field at the point midway between the two wires is