Answer:
- <u><em>The solution to f(x) = s(x) is x = 2012. </em></u>
Explanation:
<u>Rewrite the table and the choices for better understanding:</u>
<em>Enrollment at a Technical School </em>
Year (x) First Year f(x) Second Year s(x)
2009 785 756
2010 740 785
2011 690 710
2012 732 732
2013 781 755
Which of the following statements is true based on the data in the table?
- The solution to f(x) = s(x) is x = 2012.
- The solution to f(x) = s(x) is x = 732.
- The solution to f(x) = s(x) is x = 2011.
- The solution to f(x) = s(x) is x = 710.
<h2>Solution</h2>
The question requires to find which of the options represents the solution to f(x) = s(x).
That means that you must find the year (value of x) for which the two functions, the enrollment the first year, f(x), and the enrollment the second year s(x), are equal.
The table shows that the values of f(x) and s(x) are equal to 732 (students enrolled) in the year 2012,<em> x = 2012. </em>
Thus, the correct choice is the third one:
- The solution to f(x) = s(x) is x = 2012.
Answer:
Hi there
1. 28
2. -18
3. -26
4. 14
5. -7
6. 2
7. -17
8. 12
9. -12
10. -15
11. 24
12. 8
13. 2
14. 4
15. - 23
16. - 9
Step-by-step explanation:
there is a easy step to integers
1. if there is a plus then minus or vice versa way then u should subtract .
( + - = - )
2. if there are two plus signs then, add .
( + + = + )
3. if there are two minus signs then , subtract
( - - = - )
hope u understand
Answer:
72
Step-by-step explanation:
Answer:
a = 3
b = 2
c = 0
d = -4
Step-by-step explanation:
Form 4 equations and solve simultaneously
28 = a(2)³ + b(2)² + c(2) + d
28 = 8a + 4b + 2c + d (1)
-5 = -a + b - c + d (2)
220 = 64a + 16b + 4c + d (3)
-20 = -8a + 4b - 2c + d (4)
(1) + (4)
28 = 8a + 4b + 2c + d
-20 = -8a + 4b - 2c + d
8 = 8b + 2d
d = 4 - 4b
Equation (2)
c = -a + b + d + 5
c = -a + b + 4 - 4b+ 5
c = -a - 3b + 9
28 = 8a + 4b + 2c + d (1)
28 = 8a + 4b + 2(-a - 3b + 9) + 4 - 4b
28 = 6a - 6b + 22
6a - 6b = 6
a - b = 1
a = b + 1
220 = 64a + 16b + 4c + d (3)
220 = 64(b + 1) + 16b + 4(-b - 1 - 3b + 9) + 4 - 4b
220 = 60b + 100
60b = 120
b = 2
a = 2 + 1
a = 3
c = -3 - 3(2) + 9
c = 0
d = 4 - 4(2)
d = -4