1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ohaa [14]
2 years ago
14

Find the area of the following figure: 12yd 8yd 4yd

Mathematics
1 answer:
dalvyx [7]2 years ago
4 0
Area of rectangle + Area of semi circle
12 * 4 + (22/7 * 4^2)/2
48 + 25.14
73.14 yard square
You might be interested in
If LaTeX: m\angle ABF=8s-6m ∠ A B F = 8 s − 6 and LaTeX: m\angle ABE=2\left(s+11\right)m ∠ A B E = 2 ( s + 11 ), find LaTeX: m\a
kolbaska11 [484]

Answer:

<h2><em>2(3s-14)</em></h2>

Step-by-step explanation:

Given the angles ∠ABF=8s-6, ∠ABE = 2(s + 11), we are to find the angle ∠EBF. The following expression is true for the three angles;

∠ABF = ∠ABE + ∠EBF

Substituting the given angles into the equation to get the unknown;

8s-6 = 2(s + 11)+ ∠EBF

open the parenthesis

8s-6 = 2s + 22+ ∠EBF

∠EBF = 8s-6-2s-22

collect the like terms

∠EBF = 8s-2s-22-6

∠EBF = 6s-28

factor out the common multiple

∠EBF = 2(3s-14)

<em></em>

<em>Hence the measure of angle ∠EBF is 2(3s-14)</em>

8 0
3 years ago
A hair salon serviced 24 customers in a day for a total profit of $846. Haircuts are $22 and hair coloring is $75. If none of th
ser-zykov [4K]
D. because c represents the customers a day and 75 is hair coloring and 22 is hair cuts
7 0
3 years ago
Is this true? if not what’s the answer asap!
tensa zangetsu [6.8K]

Answer:

(x {}^{ - 4} ) {}^{2} \:  =  \: x {}^{ - 4 \times 2 }   =  \: x {}^{ - 8}  =  \:  \frac{1}{ x {}^{8}  }

4 0
3 years ago
45 centimeters is equivalent to how many inches?
Fiesta28 [93]

It is equivalent to 17.7165 inches.

5 0
2 years ago
Read 2 more answers
<img src="https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7Bx%2By%3D1%7D%20%5Catop%20%7Bx-2y%3D4%7D%7D%20%5Cright.%20%5C%5C%5Clef
brilliants [131]

Answer:

<em>(a) x=2, y=-1</em>

<em>(b)  x=2, y=2</em>

<em>(c)</em> \displaystyle x=\frac{5}{2}, y=\frac{5}{4}

<em>(d) x=-2, y=-7</em>

Step-by-step explanation:

<u>Cramer's Rule</u>

It's a predetermined sequence of steps to solve a system of equations. It's a preferred technique to be implemented in automatic digital solutions because it's easy to structure and generalize.

It uses the concept of determinants, as explained below. Suppose we have a 2x2 system of equations like:

\displaystyle \left \{ {{ax+by=p} \atop {cx+dy=q}} \right.

We call the determinant of the system

\Delta=\begin{vmatrix}a &b \\c  &d \end{vmatrix}

We also define:

\Delta_x=\begin{vmatrix}p &b \\q  &d \end{vmatrix}

And

\Delta_y=\begin{vmatrix}a &p \\c  &q \end{vmatrix}

The solution for x and y is

\displaystyle x=\frac{\Delta_x}{\Delta}

\displaystyle y=\frac{\Delta_y}{\Delta}

(a) The system to solve is

\displaystyle \left \{ {{x+y=1} \atop {x-2y=4}} \right.

Calculating:

\Delta=\begin{vmatrix}1 &1 \\1  &-2 \end{vmatrix}=-2-1=-3

\Delta_x=\begin{vmatrix}1 &1 \\4  &-2 \end{vmatrix}=-2-4=-6

\Delta_y=\begin{vmatrix}1 &1 \\1  &4 \end{vmatrix}=4-3=3

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-6}{-3}=2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{3}{-3}=-1

The solution is x=2, y=-1

(b) The system to solve is

\displaystyle \left \{ {{4x-y=6} \atop {x-y=0}} \right.

Calculating:

\Delta=\begin{vmatrix}4 &-1 \\1  &-1 \end{vmatrix}=-4+1=-3

\Delta_x=\begin{vmatrix}6 &-1 \\0  &-1 \end{vmatrix}=-6-0=-6

\Delta_y=\begin{vmatrix}4 &6 \\1  &0 \end{vmatrix}=0-6=-6

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-6}{-3}=2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{-6}{-3}=2

The solution is x=2, y=2

(c) The system to solve is

\displaystyle \left \{ {{-x+2y=0} \atop {x+2y=5}} \right.

Calculating:

\Delta=\begin{vmatrix}-1 &2 \\1  &2 \end{vmatrix}=-2-2=-4

\Delta_x=\begin{vmatrix}0 &2 \\5  &2 \end{vmatrix}=0-10=-10

\Delta_y=\begin{vmatrix}-1 &0 \\1  &5 \end{vmatrix}=-5-0=-5

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-10}{-4}=\frac{5}{2}

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{-5}{-4}=\frac{5}{4}

The solution is

\displaystyle x=\frac{5}{2}, y=\frac{5}{4}

(d) The system to solve is

\displaystyle \left \{ {{6x-y=-5} \atop {4x-2y=6}} \right.

Calculating:

\Delta=\begin{vmatrix}6 &-1 \\4  &-2 \end{vmatrix}=-12+4=-8

\Delta_x=\begin{vmatrix}-5 &-1 \\6  &-2 \end{vmatrix}=10+6=16

\Delta_y=\begin{vmatrix}6 &-5 \\4  &6 \end{vmatrix}=36+20=56

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{16}{-8}=-2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{56}{-8}=-7

The solution is x=-2, y=-7

4 0
3 years ago
Other questions:
  • Which of the following is a solution of x^2 + 2x + 8?
    6·1 answer
  • How many atoms are in 68 grams of CO2
    10·1 answer
  • the product of 8 and a number x is equal to 32. write an algebraic expression, an equation, or an inequality
    9·2 answers
  • The sum of two numbers is 18 and their difference is 8
    12·2 answers
  • Tim needs 23 3/4 m of wood trim to remodel a room. Wood trim is sold in lengths of
    13·1 answer
  • Johnny has two apples and gives 5 to clara...
    9·1 answer
  • What is 3-2x&gt;-5 in an inequality form
    13·1 answer
  • How many lakhs are there in 2 millions?​
    5·1 answer
  • Cost per item: $6.06 item sold: 64321 total profit: $25123.5 sale price:?
    12·1 answer
  • Is this right ? Plz help mee
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!