Answer:
D. Rx) = x2 - 4x + 10
Step-by-step explanation:
R(x)=(x-2)^2+6
R(x)=(x-2)^2+6
=(x-2)(x-2)+6
=x^2-2x-2x+4+6
=x^2-4x+10
R(x) = x^2 - 4x + 10
Option D is the answer
Answer:
f (x) = x2 shows us that function " f " takes " x " and squares it. Example: with f (x) = x2: becomes an output of 16. In fact we can write f (4) = 16. The "x" is Just a Place-Holder! Don't get too concerned about "x", it is just there to show us where the input goes and what happens to it.
Answer:
Total pictures = 84+12 = 96
roll of films = 96 / 24 = 4
she used 4 rolls
Answer:
(i) (f - g)(x) = x² + 2·x + 1
(ii) (f + g)(x) = x² + 4·x + 3
(iii) (f·g)(x) = x³ + 4·x² + 5·x + 2
Step-by-step explanation:
The given functions are;
f(x) = x² + 3·x + 2
g(x) = x + 1
(i) (f - g)(x) = f(x) - g(x)
∴ (f - g)(x) = x² + 3·x + 2 - (x + 1) = x² + 3·x + 2 - x - 1 = x² + 2·x + 1
(f - g)(x) = x² + 2·x + 1
(ii) (f + g)(x) = f(x) + g(x)
∴ (f + g)(x) = x² + 3·x + 2 + (x + 1) = x² + 3·x + 2 + x + 1 = x² + 4·x + 3
(f + g)(x) = x² + 4·x + 3
(iii) (f·g)(x) = f(x) × g(x)
∴ (f·g)(x) = (x² + 3·x + 2) × (x + 1) = x³ + 3·x² + 2·x + x² + 3·x + 2 = x³ + 4·x² + 5·x + 2
(f·g)(x) = x³ + 4·x² + 5·x + 2
Positive integer factors of 100:
1, 2, 4, 5, 10, 20, 25, 50, 100
Now find if they are a multiple of 2 or 3.
2, 4, 10, 20, 50, 100
That is 6 factors.