Answer:
a. attached graph; zero real: 2
b. p(x) = (x - 2)(x + 3 + 3i)(x + 3 - 3i)
c. the solutions are 2, -3-3i and -3+3i
Step-by-step explanation:
p(x) = x³ + 4x² + 6x - 36
a. Through the graph, we can see that 2 is a real zero of the polynomial p. We can also use the Rational Roots Test.
p(2) = 2³ + 4.2² + 6.2 - 36 = 8 + 16 + 12 - 36 = 0
b. Now, we can use Briott-Ruffini to find the other roots and write p as a product of linear factors.
2 | 1 4 6 -36
1 6 18 0
x² + 6x + 18 = 0
Δ = 6² - 4.1.18 = 36 - 72 = -36 = 36i²
√Δ = 6i
x = -6±6i/2 = 2(-3±3i)/2
x' = -3-3i
x" = -3+3i
p(x) = (x - 2)(x + 3 + 3i)(x + 3 - 3i)
c. the solutions are 2, -3-3i and -3+3i
Answer:
B
Step-by-step explanation:
Answer:
View graph
Step-by-step explanation:
The population refers to the whole set under study, while the sample is a representative part of that population.
[(8 - 2 * 29)]/3
Let's solve inside the brackets first.
According to PEMDAS, multiplication gets solved before subtraction so multiply 2 * 29 in the parentheses.
[(8 - 58)]/3
Subtract 58 from 8 in the parentheses.
(-50)/3
Divide -50 by 3.
-16.667 or -16 2/3 is your answer.
Answer:
Solution given:
<u>A.coordinate are</u>
A(-2,3)
B(0,-3)
C(4,5)
<u>B</u><u>.</u><u>Each</u><u> </u><u>length</u><u> </u><u>are</u><u> </u><u>:</u>
we have
length 
now
AB:
=
units
BC:
=
units
AC:
=
units
<u>C.</u><u> the </u><u>figure</u><u>:</u>
<u>By</u><u> </u><u>using</u><u> </u><u>Pythagoras</u><u> </u><u>law</u>
base[b]=AB=perpendicular [p]=AC
hypotenuse [h]=BC
we have
h²=p²+b²
substituting value
(
)²=2p²
16*5=2*(
)²
80=2*4*10
80=80
<u>SO</u><u> </u><u>IT</u><u> </u><u>IS</u><u> </u><u>RIGHT</u><u> </u><u>ANGLED</u><u> </u><u>ISOSCELES</u><u> </u><u>TRIANGLE</u><u>.</u>