Is 4=14 beacause u just solve it and that’s the answer
Answer:

General Formulas and Concepts:
<u>Pre-Calculus</u>
2x2 Matrix Determinant:

3x3 Matrix Determinant:

<u>Calculus</u>
Limits
Limit Rule [Variable Direct Substitution]:

Limit Property [Multiplied Constant]:

Special Limit Rule [L’Hopital’s Rule]:

Derivatives
- Derivatives
- Derivative Notation
Derivative Property [Addition/Subtraction]:

Derivative Rule [Chain Rule]:
![\displaystyle [u(v)]' = u'(v)v'](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Bu%28v%29%5D%27%20%3D%20u%27%28v%29v%27)
Step-by-step explanation:
*Note:
I will not be able to fit in all the derivative work and will assume you can take derivatives with ease.
<u />
<u>Step 1: Define</u>
<em>Identify given.</em>
<em />

<u>Step 2: Find Limit Pt. 1</u>
- [Function] Simplify [3x3 and 2x2 Matrix Determinant]:

- [Function] Substitute in <em>x</em>:

<u>Step 3: Find Limit Pt. 2</u>
- [Limit] Rewrite [Limit Property - Multiplied Constant]:

- [Limit] Apply Limit Rule [Variable Direct Substitution]:

Since we have an indeterminant form, we will have to use L'Hopital's Rule. We can <em>differentiate</em> using basic differentiation techniques listed above under "<u>Calculus</u>":
![\displaystyle \frac{d \Delta (\frac{\pi}{3})}{dh} = -3\sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \tan \bigg( 2h + \frac{\pi}{3} \bigg) + tan^2 \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 3 \tan^2 \bigg( h + \frac{\pi}{3} + 3 \bigg] - 3\sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg] + \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 6 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 6 \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%20%5CDelta%20%28%5Cfrac%7B%5Cpi%7D%7B3%7D%29%7D%7Bdh%7D%20%3D%20-3%5Csqrt%7B3%7D%20%5Cbigg%5B%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%201%20%5Cbigg%5D%20%5Ctan%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%20tan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%203%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%2B%203%20%5Cbigg%5D%20-%203%5Csqrt%7B3%7D%20%5Ctan%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%202%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%202%20%5Cbigg%5D%20%2B%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%206%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%206%20%5Cbigg%5D)

Using L'Hopital's Rule, we can <em>substitute</em> the derivatives and evaluate again. When we do so, we should get <em>another</em> indeterminant form. We will need to use L'Hopital's Rule <em>again</em>:
![\displaystyle \frac{d^2 \Delta (\frac{\pi}{3})}{dh^2} = \tan \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] - 2\sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \bigg[ \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 1 \bigg] - \sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%5E2%20%5CDelta%20%28%5Cfrac%7B%5Cpi%7D%7B3%7D%29%7D%7Bdh%5E2%7D%20%3D%20%5Ctan%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%202%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%202%20%5Cbigg%5D%20%5Cbigg%5B%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%201%20%5Cbigg%5D%20-%202%5Csqrt%7B3%7D%20%5Cbigg%5B%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%201%20%5Cbigg%5D%20%5Cbigg%5B%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%201%20%5Cbigg%5D%20-%20%5Csqrt%7B3%7D%20%5Cbigg%5B%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%201%20%5Cbigg%5D%20%5Cbigg%5B%202%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%202%20%5Cbigg%5D)
![\displaystyle + \tan^3 \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] - \sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] + \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg] \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%2B%20%5Ctan%5E3%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%202%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%202%20%5Cbigg%5D%20-%20%5Csqrt%7B3%7D%20%5Ctan%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Ctan%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%202%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%202%20%5Cbigg%5D%20%2B%20%5Ctan%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%202%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%202%20%5Cbigg%5D%20%5Cbigg%5B%204%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%204%20%5Cbigg%5D)
![\displaystyle - 2\sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg] + 2 \tan^3 \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20-%202%5Csqrt%7B3%7D%20%5Ctan%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Ctan%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%204%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%204%20%5Cbigg%5D%20%2B%202%20%5Ctan%5E3%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%204%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%204%20%5Cbigg%5D)

<em>Substituting in </em>the 2nd derivative found via L'Hopital's Rule should now give us a numerical value when evaluating the limit using limit rules and the unit circle:

∴ we have <em>evaluated</em> the given limit.
---
Learn more about limits: brainly.com/question/27438198
---
Answer:
F + 7 = 205
Step-by-step explanation:
The answer is D. -15 because I am assuming that the vertical lines mean brackets, and we have to work out the brackets first (according to BIDMAS). Doing so, -6 + 2 = -4 and -4 + -11 = -15.
lateral area = 2 x pi x r x h
so 2 x 3.14 x 5 x 13 = 408.2 square inches