Newton's three laws of motion can be used to describe the motion of the ice skating.
<h3>Newton's first law of motion</h3>
Newton's first law of motion states that an object at rest or uniform motion in a straight line will continue in that state unless it is acted upon by an external force.
- Based on this law, once the ice skating starts, it will continue endlessly unless external force stops it.
<h3>Newton's second law of motion</h3>
Newton's second law of motion states that the force applied to an object is directly proportional to the product of mass and acceleration of an object.
- Based on this law, the force applied to the ice skating is equal to the product of mass and acceleration of the ice skating.
<h3>Newton's third law of motion</h3>
This law states that action and reaction are equal and opposite.
- Based on this law, the force applied to the ice skating is equal in magnitude to the reaction of ice.
Learn more about Newton's law here: brainly.com/question/3999427
Answer: 539.4 N
Explanation:
Let's begin by explaining that Coulomb's Law establishes the following:
"The electrostatic force
between two point charges
and
is proportional to the product of the charges and inversely proportional to the square of the distance
that separates them, and has the direction of the line that joins them"
What is written above is expressed mathematically as follows:
(1)
Where:
is the electrostatic force
is the Coulomb's constant
and
are the electric charges
is the separation distance between the charges
Then:
(2)
Isolating
and
:
(3)
Now, if we keep the same charges but we decrease the distance to
, (1) is rewritten as:
(4)
Then, the new electrostatic force will be:
(5) As we can see, the electrostatic force is increased when we decrease the distance between the charges.
As the shock waves travel in concentric outward circles from the epicenter, and the diameter is measured 120 miles,
area of a circle =<span>π</span><span>r*r</span>
d=120
<span>r=<span>120/2</span></span><span>r=60</span><span><span>60*60</span>=3600</span><span>3600*π=11309.734</span>
<span>11309.734 square miles</span>
To solve this problem it is necessary to apply the concepts related to Newton's second Law and the force of friction. According to Newton, the Force is defined as
F = ma
Where,
m= Mass
a = Acceleration
At the same time the frictional force can be defined as,

Where,
Frictional coefficient
N = Normal force (mass*gravity)
Our values are given as,

By condition of Balance the friction force must be equal to the total net force, that is to say



Re-arrange to find acceleration,



Therefore the acceleration the horse can give is 