Answer:
sned me short notes of Physics of all branches (post graduation level) thanks
+923466867221
Explanation:
<u>Answer:</u>
The ball fall vertically 2.69 ft by the time it reached home plate 60.0 ft away.
<u>Explanation:</u>
Fastest recorded pitches major-league baseball, thrown by nolan ryan in 1974 = 100.8 mi/hr = 44.8 m/s
The horizontal distance to home plate = 60.0 ft = 18.288 m
We have the horizontal velocity = 44.8 m/s
So time taken = 18.288/44.8 = 0.408 seconds.
The distance traveled by baseball vertically is found out by equation 
Here u =0m/s, a = 9.81
and t = 0.408 s
Substituting

So vertical distance traveled = 0.82 m = 2.69 ft
Answer:
The potential energy (P.E) at the top is 392 J
The kinetic energy (K.E) at the top is 0 J
The potential energy (P.E) at the halfway point is 196 J.
The kinetic energy (K.E) at the halfway point is 196 J.
Explanation:
Given;
mass of the rock, m = 2 kg
height of the cliff, h = 20 m
speed of the rock at the halfway point, v = 14 m/s
The potential energy (P.E) and kinetic energy (K.E) when its at the top;
P.E = mgh
P.E = (2)(9.8)(20)
P.E= 392 J
K.E = ¹/₂mv²
where;
v is velocity of the rock at the top of the cliff = 0
K.E = ¹/₂(2)(0)²
K.E = 0
The potential energy (P.E) and kinetic energy (K.E) at the halfway point;
P.E = mg(¹/₂h)
P.E = (2)(9.8)(¹/₂ x 20)
P.E = 196 J
K.E = ¹/₂mv²
where;
v is velocity of the rock at the halfway point = 14 m/s
K.E = ¹/₂(2)(14)²
K.E = 196 J.