The acceleration is 
Explanation:
We can solve the problem by applying Newton's second law of motion: in fact, the net force acting on an object is equal to the product between the mass of the object and its acceleration. Therefore we can write:

where:
is the resultant force acting on the object
m is its mass
a is its acceleration
In this problem, we have the following forces acting on the system:
(forward)
(backward)
So, Newton's second law can be rewritten as:

where:
m = 1050 kg is the mass of all the students
Solving the formula for a, we find the acceleration of the system:

Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly
Answer:
5 parsecs
https://quizlet.com/50937532/astronomy-chapter-17-flash-cards/
Answer:
battery .................
The distance covered is 1000 m
Explanation:
The rocket is moving by uniformly accelerated motion, so we can find the distance it covers by using the following suvat equation:

where
s is the distance covered
v is the final velocity
t is the time
a is the acceleration
For the rocket in this problem, we have:
v = 445 m/s is the final velocity
is the acceleration
t = 4.50 s is the time
Substituting, we find the distance covered:

Learn more about accelerated motion:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly