Answer:
$36.00
Step-by-step explanation:
Answer:
The second option: 3 (6 - 5n)/20n
Step-by-step explanation:
Make sure all fractions have a common denominator:
Step 1. Find a common multiple between all three denominators
5, 4, and 10 all have a common multiple of 20. Proof: 5 × 4 = 20, 4 × 5 = 20, and 10 × 2 = 20
Step 2. Multiply the denominators to get to 20. Whatever you do to the bottom (denominator) must be done to the top (numerator).
1/5n × 4/4 = 4/20n
3/4 × 5n/5n = 15n/20n
7/10n × 2/2 = 14/20n
Your fractions now all have a common denominator of 20n.
Rewrite the equation using the new fractions:
4/20n - 15n/20n + 14/20n
Only focus on adding/subtracting the numerators; the denominators will stay the same: 20n.
(4 - 15n + 14)/20n
Combine like terms:
(18 - 15n)/20n
Factor out any numbers possible:
3(6 - 5n)/20n
Note* 3 go into both 18 and 15, which allows us to factor 3 out. 18 ÷ 3 = 6 and 15 ÷ 3 = 5, giving us our new numbers inside the parentheses.
Answer:
<h2>C. <em>
20,160</em></h2>
Step-by-step explanation:
This question bothers on permutation since we are to select a some people out of a group of people and then arrange in a straight line. If r object are to be arranged in a straight line when selecting them from n pool of objects. This can be done in nPr number of ways.
nPr = n!/(n-r)!
Selection of 6 people out of 8 people can therefore be done in 8C6 number of ways.
8P6 = 8!/(8-6)!
8P6 = 8!/2!
8P6 = 8*7*6*5*4*3*2!/2!
8P6 = 8*7*6*5*4*3
8P6 = 56*360
8P6 = 20,160
<em>Hence this can be done in 20,160 number of ways</em>

![\sf \left[\begin{array}{cc}\sf 4&\sf 6\\ \sf 5 &\sf 8 \\ \sf 3 &\sf -2\end{array}\right]-\left[\begin{array}{cc}\sf 2&\sf 3\\ \sf 1 &\sf 4 \\ \sf -5&\sf3\end{array}\right]](https://tex.z-dn.net/?f=%5Csf%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Csf%204%26%5Csf%206%5C%5C%20%5Csf%205%20%26%5Csf%208%20%5C%5C%20%5Csf%203%20%26%5Csf%20-2%5Cend%7Barray%7D%5Cright%5D-%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Csf%202%26%5Csf%203%5C%5C%20%5Csf%201%20%26%5Csf%204%20%5C%5C%20%5Csf%20-5%26%5Csf3%5Cend%7Barray%7D%5Cright%5D)
Just substract corresponding terms
![\\ \sf\longmapsto \left[\begin{array}{cc}\sf 2 &\sf 3\\ \sf 4&\sf4\\ \sf 8&\sf -5\end{array}\right]](https://tex.z-dn.net/?f=%5C%5C%20%5Csf%5Clongmapsto%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Csf%202%20%26%5Csf%203%5C%5C%20%5Csf%204%26%5Csf4%5C%5C%20%5Csf%208%26%5Csf%20-5%5Cend%7Barray%7D%5Cright%5D)
Option B
Answer:
1024 or A
Step-by-step explanation:
64 x4 is 256 x4 it's a 1024