1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
I am Lyosha [343]
3 years ago
9

HELPEPEPPDODOEPPDPFPF

Mathematics
2 answers:
Andrei [34K]3 years ago
4 0
Man you gonna need to ask the teacher on dis one
belka [17]3 years ago
4 0

X =12

Step-by-step explanation:

Supplementary Angels means the angles are added up to 180 degrees.

So , <1 + <2 = 180

Given that,

<1 = 2x +6

Now lets find the size of <2.

<em>We</em><em> </em><em>know</em><em> </em><em>that</em><em>,</em><em> </em>

<em>Angles</em><em> </em><em>in</em><em> </em><em>a</em><em> </em><em>Straight</em><em> </em><em>line</em><em> </em><em>is</em><em> </em><em>also</em><em> </em><em>added</em><em> </em><em>up</em><em> </em><em>to</em><em> </em><em>1</em><em>8</em><em>0</em><em> </em><em>de</em><em>g</em><em>rees</em><em>.</em>

<em>So</em><em>,</em><em> </em>

<em><</em><em>2</em><em>+</em><em> </em><em><</em><em> </em><em>3</em><em> </em><em>=</em><em> </em><em>1</em><em>8</em><em>0</em>

<em>Let's</em><em> </em><em>Solve</em><em>.</em>

<em>< 2 +  < 3  = 180 \\  < 2  +( 3x - 6) = 180 \\  < 2 = 180 - (3x - 6) \\  < 2 = 180 - 3x + 6 \\  < 2 = 186 - 3x</em>

<em>Now</em><em> </em><em>we</em><em> </em><em>know</em><em> </em><em>the</em><em> </em><em>size</em><em> </em><em>of</em><em> </em><em><</em><em>2</em>

<em>l</em><em>e</em><em>t</em><em>s</em><em> </em><em>find</em><em> </em><em>out</em><em> </em><em>the</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>x</em>

<em>< 1 +  < 2 = 180 \\ 2x + 6 + 186 - 3x = 180 \\  186 + 6 - 180 = 3x  - 2x \\ 12 = x</em>

<em>Let's</em><em> </em><em>che</em><em>c</em><em>k</em><em> </em><em>whether</em><em> </em><em>the</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>correct</em><em>.</em>

<em>We</em><em> </em><em>know</em><em> </em><em>that</em><em> </em><em><</em><em>1</em><em> </em><em>=</em><em><</em><em>3</em><em> </em><em>(</em>Alternative Angles)

< 1 =  < 3 \\ 2x + 6 = 3x - 6 \\ 2 \times 12 + 6 = 3 \times 12 - 6 \\ 24 + 6 = 36 - 6 \\ 30 = 30

<h3><em>Answer</em><em> </em><em>is</em><em> </em><em>Correct</em><em> </em><em>!</em><em>!</em><em>!</em></h3>

<h2><em>Hope</em><em> </em><em>this</em><em> </em><em>helps</em><em> </em><em>you</em><em>.</em><em>.</em><em>.</em></h2>

<em>Have</em><em> </em><em>a</em><em> </em><em>nice</em><em> </em><em>day</em>

<h2 /><h2><em>~</em><em>H</em><em>i</em><em>1</em><em>3</em><em>1</em><em>5</em><em>~</em></h2>
You might be interested in
You are ordering shirts for a club at your school. The function f(x) = 8x + 12 represents the cost of
Sonbull [250]
It would cost 2.50$ for each shirt.
7 0
2 years ago
Pls help quick i need this
irina [24]

Answer:

See explanation

Step-by-step explanation:

Q1-5.

1. Plane parallel to WXT is ZYU.

2. Segments parallel to \overline {VU} are \overline {ZY}, \overline {WX} and \overline {ST}

3. Segments parallel to \overline {SW} are \overline {VZ}, \overline {YU} and \overline {XT}

4. Segments skew to \overline {}\overline {XY} are \overline {SV} and \overline {VZ} (not lie in the same plane and not parallel)

5. Segments skew to \overline {}\overline {VZ} are \overline {WX} and \overline {XT} (not lie in the same plane and not parallel)

Q6.

a. \angle 4 and \angle 10 are the same-side interior angles, transversal k

b. \angle 8 and \angle 11 are alternate exterior angles, transversal m

c. \angle 1 and \angle 4 do not form any pair of angles

d. \angle 2 and \angle 12 are the same-side exterior angles, transversal  k

e. \angle 5 and \angle 7 are corresponding angles, transversal  j

f. \angle 2 and \angle 13 are alternate interior angles, transversal l

Q7.

m\angle 1=m\angle 7=131^{\circ} (as vertical angle with angle 7)

m\angle 2=180^{\circ}-131^{\circ}=49^{\circ} (as supplementary angle with angle 1)

m\angle 8=49^{\circ} (as vertical angle with angle 2)

m\angle 3=m\angle 1=131^{\circ} (as corresponding angles when parallel lines p and q are cut by transversal r)

m\angle 4=m\angle 2=49^{\circ} (as corresponding angles when parallel lines p and q are cut by transversal r)

m\angle 5=m\angle 7=131^{\circ} (as corresponding angles when parallel lines p and q are cut by transversal r)

m\angle 6=m\angle 8=49^{\circ} (as corresponding angles when parallel lines p and q are cut by transversal r)

m\angle 10=m\angle 16=88^{\circ} (as vertical angle with angle 16)

m\angle 9=180^{\circ}-88^{\circ}=92^{\circ} (as supplementary angle with angle 16)

m\angle 15=92^{\circ} (as vertical angle with angle 9)

m\angle 14=m\angle 16=88^{\circ} (as corresponding angles when parallel lines p and q are cut by transversal s)

m\angle 13=m\angle 15=92^{\circ} (as corresponding angles when parallel lines p and q are cut by transversal s)

m\angle 12=m\angle 10=88^{\circ} (as corresponding angles when parallel lines p and q are cut by transversal s)

m\angle 11=m\angle 9=92^{\circ} (as corresponding angles when parallel lines p and q are cut by transversal s)

Q8.

m\angle 7=m\angle 9=105^{\circ} (as vertical angles)

m\angle 8=180^{\circ}-105^{\circ}=75^{\circ} (as supplementary angle with angle 9)

m\angle 10=m\angle 8=75^{\circ} (as vertical angles)

m\angle 6=m\angle 8=75^{\circ} (as alternate interior angles when parallel lines a and b are cut by transversal c)

m\angle 1=180^{\circ}-75^{\circ}-63^{\circ}=42^{\circ} (by angle addition postulate)

m\angle 3=180^{\circ}-42^{\circ}-63^{\circ}=75^{\circ} (by angle addition postulate)

m\angle 4=m\angle 1=42^{\circ} (as vertical angles)

m\angle 5=m\angle 2=63^{\circ} (as vertical angles)

m\angle 11=m\angle 4=42^{\circ} (as alternate interior angles when parallel lines a and b are cut by transversal d)

m\angle 12=180^{\circ}-42^{\circ}=138^{\circ} (as supplementary angles)

m\angle 13=m\angle 11=42^{\circ} (as vertical angles)

m\angle 14=m\angle 12=138^{\circ} (as vertical angles)

3 0
3 years ago
How to find domain and range on functions
uranmaximum [27]
The domain is the set of all possible x-values which will make the function "work", and will output real y-values. When finding the domain, remember: The denominator (bottom) of a fraction cannot be zero. The number under a square root sign must be positive in this section
6 0
3 years ago
-90-60w<br><br> what are all the equivalent expressions?
Oduvanchick [21]

Answer:

−30(3+2w)

Step-by-step explanation:

Problem to solve:

-90-60w

−90−60w

1 Factor the polynomial -90-60w−90−60w by it's GCF: -30−30

-30\left(3+2w\right)

−30(3+2w)

4 0
3 years ago
4x+8y+2y+6x simplify
iren2701 [21]

10x + 10y


:)++ love you !

5 0
3 years ago
Read 2 more answers
Other questions:
  • All of the following are equivalent, except _____.<br><br> 2x + x<br> x(2 + 1)<br> 2x2<br> 3x
    7·2 answers
  • Simplify. (-4·3·2)2 A)-48 B)-48 C)-576 D)576
    9·1 answer
  • Find 0.1 more than 5.023.<br> a.5.024<br> b.5.033<br> c.5.123<br> d.5.134
    9·2 answers
  • I don't know the Answer!!!!!!<br><br> 3.5×10 to the 3rd power
    12·2 answers
  • If the volume of the crystal ball is about 113.14 cm3, the radius of the ball is approximately
    9·2 answers
  • Solve the equation using square roots. Write your answer in simplest form.<br> Question in picture
    5·1 answer
  • True or false? The graph represents a function. 5. -5 5 2.5 O A. True O B. False​
    8·1 answer
  • If m∠2 = 120°, what is m∠7?
    10·1 answer
  • Suzy has 20 counters. Mia has 9 times as many counters as Suzy.
    14·1 answer
  • What is the division of 6/11? Like how do you solve it with the work.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!