Answer:

Step-by-step explanation:
Let the first consecutive odd integer be
.
Let the second consecutive odd integer be
.
The sum of the two numbers is 56.




Put x as 27 for the second consecutive odd integer.

The two numbers are 27 and 29.
Answer:
4th one
Step-by-step explanation:
a^-2 goes down and become a^2 and

b^-1 goes up and become b

that why answer is 4th...mark me brainliest please
3x - y + z = 5 . . . (1)
x + 3y + 3z = -6 . . . (2)
x + 4y - 2z = 12 . . . (3)
From (2), x = -6 - 3y - 3z . . . (4)
Substituting for x in (1) and (3) gives
3(-6 - 3y - 3z) - y + z = 5 => -18 - 9y - 9z - y + z = 5 => -10y - 8z = 23 . . (5)
-6 - 3y - 3z + 4y - 2z = 12 => y - 5z = 18 . . . (6)
(6) x 10 => 10y - 50z = 180 . . . (7)
(5) + (7) => -58z = 203
z = 203/-58 = -3.5
From (6), y - 5(-3.5) = 18 => y = 18 - 17.5 = 0.5
From (4), x = -6 - 3(0.5) - 3(-3.5) = -6 - 1.5 + 10.5 = 3
x = 3, y = 0.5, z = -3.5
I hope this helps. X is equal to 4 and -9
Answer:
The second option will cost her less than the first one.
Step-by-step explanation:
In order to solve this problem we will create two functions to represent the cost of the car in function of the miles drove by her.
For the first option we have:

For the second option we have:

Since she intends to drive it for 10,000 miles per year for 6 years, then the total mileage she intends to drive her car is 60,000 miles. Applying this to the formula of each car and we have:


The second option will cost her less than the first one.