Answer:
n=288
Step-by-step explanation:
Rewrite the equation as
√
n
=
18
√
8
−
8
√
18
.
√
n
=
18
√
8
−
8
√
18
To remove the radical on the left side of the equation, square both sides of the equation.
√n
2
=
(
18
√
8
−
8
√
18
)
2
Simplify each side of the equation.
Use
n
√
a
x
=
a
x
n
to rewrite
√
n as n
1
2
.
(
n
1
2
)
2
=
(
18
√
8
−
8
√
18
)
2
Simplify
(
n
1
2
)
2
.
Multiply the exponents in
(
n
1
2
)
2
.
Apply the power rule and multiply exponents,
(
a
m)n
=
a
m
n
.
n
1
2
⋅
2
=
(
18
√
8
−
8
√
18
)
2
Cancel the common factor of 2
Cancel the common factor.
n
1
2
⋅
2
=
(
18
√
8
−
8
√
18
)
2
Rewrite the expression.
n
1
=
(
18
√
8
−
8
√
18
)
2
Simplify.
n
=
(
18
√
8
−
8
√
18
)
2
Simplify
(
18
√
8
−
8
√
18
)
2
Simplify each term.
Rewrite
8 as 2
2
⋅
2
.
Factor
4 out of 8
n
=
(
18
√
4
(
2
)
−
8
√
18
)
2
Rewrite
4 as 2
2
n
=
(
18√
2
2
2
−
8
√
18
)
2
Pull terms out from under the radical.
n
=
(
18
(
2
√
2
)
−
8
√
18
)
2
Multiply
2 by 18
n
=
(
36
√
2
−
8
√
18
)
2
Rewrite
18
as
3
2
⋅
2
.
Factor
9
out of
18
.
n
=
(
36
√
2
−
8
√
9
(
2
)
)
2
Rewrite
9
as
3
2
.
n
=
(
36
√
2
−
8
√
3
2
⋅
2
)
2
Pull terms out from under the radical.
n
=
(
36
√
2
−
8
(
3
√
2
)
)
2
Multiply
3
by
−
8
.
n
=
(
36
√
2
−
24
√
2
)
2
Simplify terms.
Subtract
24
√
2
from
36
√
2
.
n
=
(
12
√
2
)
2
Simplify the expression.
Apply the product rule to
12
√
2
.
n
=
12
2
√
2
2
Raise
12
to the power of
2
.
n
=
144
√
2
2
Rewrite
√
2
2
as
2
.
Use
n
√
a
x
=
a
x
n
to rewrite
√
2
as
2
1
2
.
n
=
144
(
2
1
2
)
2
Apply the power rule and multiply exponents,
(
a
m
)
n
=
a
m
n
.
n
=
144
⋅
2
1
2
⋅
2
Combine
1
2
and
2
.
n
=
144
⋅
2
2
2
Cancel the common factor of
2
.
Cancel the common factor.
n
=
144
⋅
2
2
2
Rewrite the expression.
n
=
144
⋅
2
1
Evaluate the exponent.
n
=
144
⋅
2
Multiply
144
by
2
.
n
=
288
Answer:
Step-by-step explanation:
The segment joining an original point with its rotated image forms a chord of the circle of rotation containing those two points. The center of the circle is the center of rotation.
This means you can find the center of rotation by considering the perpendicular bisectors of the segments joining points with their images. Here, the only proposed center that is anywhere near the perpendicular bisector of DE is point M.
__
Segment AD is perpendicular to corresponding segment FE, so the angle of rotation is 90°. (We don't know which way (CW or CCW) unless we make an assumption about which is the original figure.)
Answer:
Half; twice
Step-by-step explanation:
In a circle, the radius is said to be the distance from the center of the circle to any point on the edge of the circle, it is denoted as "r". The radius is called a radii if it is more than one.. The radius of a circle is half the length of the diameter of a circle because the diameter of a circle is the distance of the line that passes through the center of a circle touching both edges of the circle. It is denoted as "d".
Thus,
2r = d
r = d/2
For example, if the radius of a circle is 10cm, the diameter of the circle will be calculated as: d = 2 * 10 = 20cm. Which means if the radius is 10cm, diameter will be 20cm.
Therefore, the radius of a circle is half the length of its diameter. the diameter of a circle is twice the length of its radius