Answer:
10.
x P(X)
0 0.238
1 0.438
2 0.269
3 0.055
11.
0.707
There is 70.7% chance that at least one but at most two adults in the sample believes in the ghost
12.
1.14≅1
There will be one adult out of three we expect to believe in the ghost
Step-by-step explanation:
The probability distribution is constructed using binomial distribution.
We have to construct the probability distribution of the number adults believe in ghosts out of three adults. so,
x=0,1,2,3
n=3
p=probability of adults believe in ghosts=0.38
The binomial distribution formula
nCxp^xq^n-x=3cx0.38^x0.62^3-x
is computed for x=0,1,2,3 and the results depicts the probability distribution of the number adults believe in ghosts out of three adults.
x P(X)
0 0.238
1 0.438
2 0.269
3 0.055
11.
P(at least one but at most two adults in the sample believes in the ghost )= P(x=1)+P(x=2)=0.437+0.269=0.707
P(at least one but at most two adults in the sample believes in the ghost )=70.7%
12. E(x)=n*p
here n=3 adults and p=0.38
E(x)=3*0.38=1.14
so we expect one adult out of three will believe in the ghosts.
119 degrees. 32+29=61 180-61=119 degrees
Answer:
0.0286 = 2.86% probability that today is Monday.
Step-by-step explanation:
Conditional Probability
We use the conditional probability formula to solve this question. It is
In which
P(B|A) is the probability of event B happening, given that A happened.
is the probability of both A and B happening.
P(A) is the probability of A happening.
In this question:
Event A: Dressed correctly
Event B: Monday
Probability of being dressed correctly:
100% = 1 out of 4/7(mom dresses).
(0.5)^3 = 0.125 out of 3/7(toddler dresses himself). So

Probability of being dressed correctly and being Monday:
The toddler dresses himself on Monday, so (0.5)^3 = 0.125 probability of him being dressed correctly, 1/7 probability of being Monday, so:

What is the probability that today is Monday?

0.0286 = 2.86% probability that today is Monday.