Answer: Reject the eight- ounces claim.
Step-by-step explanation:
For left tailed test , On a normal curve the rejection area lies on the left side of the critical value.
It means that if the observed z-value is less than the critical value then it will fall into the rejection region other wise not.
As per given ,
Objective : A coffee-dispensing machine is supposed to deliver eight ounces of liquid or less.
Then ,
, since alternative hypothesis is left-tailed thus the test is an left-tailed test.
the critical value for z for a one-tailed test with the tail in the left end is -1.645 and the obtained value is -1.87.
Clearly , -1.87 < -1.645
⇒ -1.87 falls under rejection region.
⇒ Decision : Reject null hypothesis.
i.e. we reject the eight- ounces claim.
Decimal places mean we just start counting immediately after the decimal point, so:
2dp: 0.00
1dp: 0.0
Significant figures, we start counting starting at the first non zero number
So we start counting at the 9, therefore:
2sf: 0.00097
3sf: 0.000965
The new coordinates are (3, 1)
Answer:
W=32
L=70
Step-by-step explanation:
L=2w+6
204=2L+2W
204=2w+2(2w+6)
204=2w+4w+12
192=6w
w=32
L=2(32)+6
L=70
Answer:
The center is -1,5 and the radius is 2
Step-by-step explanation:
Subtract 22 from both sides of the equation. x 2 + y 2 + 2 x − 10 y = − 22 Complete the square for x 2 + 2 x . ( x + 1 ) 2 − 1 Substitute ( x + 1 ) 2 − 1 for x 2 + 2 x in the equation x 2 + y 2 + 2 x − 10 y = − 22 . ( x + 1 ) 2 − 1 + y 2 − 10 y = − 22 Move − 1 to the right side of the equation by adding 1 to both sides. ( x + 1 ) 2 + y 2 − 10 y = − 22 + 1 Complete the square for y 2 − 10 y . ( y − 5 ) 2 − 25 Substitute ( y − 5 ) 2 − 25 for y 2 − 10 y in the equation x 2 + y 2 + 2 x − 10 y = − 22 . ( x + 1 ) 2 + ( y − 5 ) 2 − 25 = − 22 + 1 Move − 25 to the right side of the equation by adding 25 to both sides. ( x + 1 ) 2 + ( y − 5 ) 2 = − 22 + 1 + 25 Simplify − 22 + 1 + 25 . ( x + 1 ) 2 + ( y − 5 ) 2 = 4 This is the form of a circle. Use this form to determine the center and radius of the circle. ( x − h ) 2 + ( y − k ) 2 = r 2 Match the values in this circle to those of the standard form. The variable r represents the radius of the circle, h represents the x-offset from the origin, and k represents the y-offset from origin. r = 2 h = − 1 k = 5 The center of the circle is found at ( h , k ) . Center: ( − 1 , 5 ) These values represent the important values for graphing and analyzing a circle.