Answer:
The explicit rule of the geometric sequence
aₙ = 187.5 (0.8)ⁿ⁻¹
Step-by-step explanation:
<u><em> Step(i):-</em></u>
Given that the third term of the sequence = 120
tₙ = a rⁿ⁻¹
t₃ = a r³⁻¹ = ar²
120 = ar² ..(i)
Given that the fifth term of the given geometric sequence = 76.8
tₙ = a rⁿ⁻¹
t₅ = a r⁵⁻¹ = a r⁴
76.8 = a r⁴...(ii)
<u><em>Step(ii):</em></u>-
Dividing (ii) and (i)

r² = 0.64
r =√ 0.64 = 0.8
Substitute r= 0.8 in equation (i)
120 = ar²
120 = a(0.8)²
⇒ 
<u><em>Step(iii):-</em></u>
The explicit rule of the geometric sequence
aₙ = a rⁿ⁻¹
put a= 187.5 and r = 0.8
aₙ = 187.5 (0.8)ⁿ⁻¹
Answer:
H
Step-by-step explanation:
The additive inverse property states that x-x=0, or x+(-x). The property that represents this is H.
Hope this helps plz mark brainliest :D
Answer:
x = 42
Step-by-step explanation:
The marked angles are supplementary, so their sum is 180°.
(2x +8) +(2x +4) = 180
4x +12 = 180 . . . . . . . . . simplify
x +3 = 45 . . . . . . . divide by 4 (because we can)
x = 42 . . . . . . subtract 3
_____
<em>Additional comment</em>
A "two-step" linear equation like this one is usually solved by subtracting the unwanted constant, then dividing by the coefficient of the variable. Here, we have done those steps in reverse order. This makes the numbers smaller and eliminates the coefficient of the variable. Sometimes I find it easier to solve the equation this way.
M= 20 because the rate of change is -3.