Solve :
1/2(x + 32) = -10....multiply both sides by 2
x + 32 = -10 * 2
x + 32 = -20
x = -20 - 32
x = - 52 <===
check :
1/2(x + 32) = -10.....when x = -52
1/2(-52 + 32) = -10
1/2(-20) = -10
-20/2 = -10
-10 = -10 (correct)
I believe the answer is 4/15.
(
3
x
3
2
y
3
x
2
y
−
1
2
)
−
2
(
3
x
3
2
y
3
x
2
y
-
1
2
)
-
2
Move
x
3
2
x
3
2
to the denominator using the negative exponent rule
b
n
=
1
b
−
n
b
n
=
1
b
-
n
.
⎛
⎝
3
y
3
x
2
y
−
1
2
x
−
3
2
⎞
⎠
−
2
(
3
y
3
x
2
y
-
1
2
x
-
3
2
)
-
2
Multiply
x
2
x
2
by
x
−
3
2
x
-
3
2
by adding the exponents.
Tap for more steps...
(
3
y
3
x
1
2
y
−
1
2
)
−
2
(
3
y
3
x
1
2
y
-
1
2
)
-
2
Move
y
−
1
2
y
-
1
2
to the numerator using the negative exponent rule
1
b
−
n
=
b
n
1
b
-
n
=
b
n
.
(
3
y
3
y
1
2
x
1
2
)
−
2
(
3
y
3
y
1
2
x
1
2
)
-
2
Multiply
y
3
y
3
by
y
1
2
y
1
2
by adding the exponents.
Tap for more steps...
⎛
⎝
3
y
7
2
x
1
2
⎞
⎠
−
2
(
3
y
7
2
x
1
2
)
-
2
Change the sign of the exponent by rewriting the base as its reciprocal.
⎛
⎝
x
1
2
3
y
7
2
⎞
⎠
2
(
x
1
2
3
y
7
2
)
2
Use the power rule
(
a
b
)
n
=
a
n
b
n
(
a
b
)
n
=
a
n
b
n
to distribute the exponent.
Tap for more steps...
(
x
1
2
)
2
3
2
(
y
7
2
)
2
(
x
1
2
)
2
3
2
(
y
7
2
)
2
Simplify the numerator.
Tap for more steps...
x
3
2
(
y
7
2
)
2
x
3
2
(
y
7
2
)
2
Simplify the denominator.
Tap for more steps...
x
9
y
7
Answer:
f(x)= -2x+190
Step-by-step explanation:
Answer:
Step-by-step explanation:
The parent function here is y = log x, where 10 is the base.
The derivative of y = log x is dy/dx = (ln x) / ln 10.
The derivative of y = log (ax+b) is found in that manner, but additional steps are necessary: differentiate the argument ax + b:
The derivative with respect to 10 of log (ax + b) is:
dy/dx = [ 1 / (ax + b) ] / [ ln 10 ] *a, where a is the derivative of (ax + b).
Alternatively, we could express the answer as
dy/dx = [ a / (ax + b) ] / [ ln 10 ]