Answer:
Step-by-step explanation:
Rewrite -x-2y= -10 as -2y= x - 10 and then as y = (-1/2)x + 5.
Then choose any 3 x values and find the corresponding y values using this formula. For example:
x y = (-1/2)x + 5 (x, y)
----- -------------------- ---------
0 5 (0, 5)
-4 (-1/2)(-4) + 5 = 7 (-4, 7)
6 (-1/2)(6) + 5 = 2 (6, 2)
Plot these three points and then draw a line through them.
Answer:
The center is at (-3, -2) and the radius = 1.
Step-by-step explanation:
We can do this by converting the given equation to standard form.
x^2+6x+y^2+4y+12=0
x^2+6x+y^2+4y = -12
Completing the square on the x and y terms:
(x + 3)^2 - 9 + (y + 2)^2 - 4 = -12
(x + 3)^2 + ( y + 2)^2 = -12 + 9 + 4
(x + 3)^2 + ( y + 2)^2 = 1
So the center is (-3, -2) and the radius = 1.
Answer:
x= 3, y=0, z= 1
Step-by-step explanation:
Let's label the 3 given equations first.
2x +3y +4z= 10 -----(1)
3x +2y -4z= 5 -----(2)
x +4y +2z= 5 -----(3)
(1) +(2):
<em>This</em><em> </em><em>is</em><em> </em><em>to</em><em> </em><em>eliminate</em><em> </em><em>the</em><em> </em><em>z</em><em> </em><em>term</em><em>.</em>
2x +3y +4z +3x +2y -4z= 10 +5
5x +5y= 15
<em>Divide</em><em> </em><em>by</em><em> </em><em>5</em><em> </em><em>on</em><em> </em><em>both</em><em> </em><em>sides</em><em>:</em>
x +y= 3 -----(4)
(3) ×2:
2x +8y +4z= 10 -----(5)
(2) +(5):
<em>This</em><em> </em><em>is</em><em> </em><em>to</em><em> </em><em>eliminate</em><em> </em><em>z</em><em> </em><em>term</em><em>.</em>
3x +2y -4z + 2x +8y +4z= 5 +10
5x +10y= 15
<em>Divide</em><em> </em><em>by</em><em> </em><em>5</em><em> </em><em>throughout</em><em>.</em>
x +2y= 3 -----(6)
(6) -(4):
x +2y -(x +y)= 3 -3
x +2y -x -y= 0
y= 0
subst. y=0 into (4):
x +0= 3
x= 3
subst. x=3, y=0 into (3):
3 +4(0) +2z= 5
3 +2z= 5
2z= 5 -3
2z= 2
z= 2÷2
z= 1
Answer:
x= 4
Step-by-step explanation:
40x-20=100+10x
Subtract 10x and add 20 both sides:
30x= 120
x=4
I think, the answer will be -7
We have:
f(x)=1/(x-2)
g(x)
Then:
(fg)(x)=[1/(x-2)](g(x))=g(x)/(x-2)
Now; we calculate: (fg)`(x)
Remember: (u/v)=(u`v-vu´)/v²
Therefore:
(fg)´(x)=[g´(x)*(x-2) - 1*g(x)]/ (x-2)²
We know that:
g´(1)=-1
(fg)´(1)=6
Therefore:
6=[-1*(1-2)-g(1)]/(1-2)²
6=[1-g(1)]/1
6=1-g(1)
-g(1)=6-1
g(1)=-5
Answer: B. -5