12/45 = fracción propia24/5 = fracción impropia
Answer:
A and C the other two are just stand alone numbers. so the answers are A and C
The angels across from each other are the same. That makes the sides and the interior lines the same as well. So that means the lines cannot cross each other. They are parallel
Answer:
Final answer is
.
Step-by-step explanation:
Given problem is
.
Now we need to simplify this problem.
![\sqrt[3]{x}\cdot\sqrt[3]{x^2}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%7D%5Ccdot%5Csqrt%5B3%5D%7Bx%5E2%7D)
![\sqrt[3]{x^1}\cdot\sqrt[3]{x^2}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E1%7D%5Ccdot%5Csqrt%5B3%5D%7Bx%5E2%7D)
Apply formula
![\sqrt[n]{x^p}\cdot\sqrt[n]{x^q}=\sqrt[n]{x^{p+q}}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%5Ep%7D%5Ccdot%5Csqrt%5Bn%5D%7Bx%5Eq%7D%3D%5Csqrt%5Bn%5D%7Bx%5E%7Bp%2Bq%7D%7D)
so we get:
![\sqrt[3]{x^1}\cdot\sqrt[3]{x^2}=\sqrt[3]{x^{1+2}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E1%7D%5Ccdot%5Csqrt%5B3%5D%7Bx%5E2%7D%3D%5Csqrt%5B3%5D%7Bx%5E%7B1%2B2%7D%7D)
![\sqrt[3]{x^1}\cdot\sqrt[3]{x^2}=\sqrt[3]{x^{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E1%7D%5Ccdot%5Csqrt%5B3%5D%7Bx%5E2%7D%3D%5Csqrt%5B3%5D%7Bx%5E%7B3%7D%7D)
![\sqrt[3]{x^1}\cdot\sqrt[3]{x^2}=x](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E1%7D%5Ccdot%5Csqrt%5B3%5D%7Bx%5E2%7D%3Dx)
Hence final answer is
.