Answer:
Given f(x) = 2x + 3 and g(x) = –x2 + 5, find ( f o f )(x). ... Given h(x) = sqrt(4x + 1), determine two functions f (x) and g(x) which, when composed, generate h(x).
Step-by-step explanation:
1/4
4 dogs, one box. each dog gets one fourth of the box
Answer:
1) 
2) ![\sqrt[3]{-1331}=-11](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-1331%7D%3D-11)
3) Evaluating
we get 
4) 
5) 
Step-by-step explanation:
1) 
Prime factors of 1225 : 5x5x7x7
Prime factors of 1024: 2x2x2x2x2x2x2x2x2x2


2) ![\sqrt[3]{-1331}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-1331%7D)
We know that ![\sqrt[n]{-x}=-\sqrt[n]{x} \ ( \ if \ n \ is \ odd)](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7B-x%7D%3D-%5Csqrt%5Bn%5D%7Bx%7D%20%5C%20%28%20%5C%20if%20%5C%20n%20%5C%20is%20%5C%20odd%29)
Applying radical rule:
![\sqrt[3]{-1331}\\=-\sqrt[3]{1331} \\=-\sqrt[3]{11\times\11\times11}\\=-\sqrt[3]{11^3} \\Using \ \sqrt[n]{x^n}=x \\=-11](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-1331%7D%5C%5C%3D-%5Csqrt%5B3%5D%7B1331%7D%20%5C%5C%3D-%5Csqrt%5B3%5D%7B11%5Ctimes%5C11%5Ctimes11%7D%5C%5C%3D-%5Csqrt%5B3%5D%7B11%5E3%7D%20%5C%5CUsing%20%5C%20%5Csqrt%5Bn%5D%7Bx%5En%7D%3Dx%20%5C%5C%3D-11)
So, ![\sqrt[3]{-1331}=-11](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-1331%7D%3D-11)
3) 
It can be written as:

Evaluating
we get 
4) 
Put value of x, y and z in equation and solve:

So, 
5) 
We know (-a)^n = (a)^n when n is even and (-a)^n = (-a)^n when n is odd

So, 
Answer:
x = 4
y = 2
Step-by-step explanation:
x - y = 2
x = 2 + y
2x + 3y = 14
2(2 + y) + 3y = 14
4 + 2y + 3y = 14
4 + 5y = 14
5y = 10
y = 2
x - y = 2
x - 2 = 2
x = 4