The correct answer is approximately 11.73 grams of sulfuric acid.
The theoretical yield of water from Al(OH)3 is lower than that of H₂SO₄. As a consequence, Al(OH)3 is the limiting reactant, H₂SO₄ is in excess.
The balanced equation is:
2Al(OH)₃ + 3H₂SO₄ ⇒ Al₂(SO₄)₃ + 6H₂O
Each mole of Al(OH)3 corresponds to 3/2 moles of H₂SO₄. The molecular mass of Al(OH)3 is 78.003 g/mol. There are 15/78.003 = 0.19230 moles of Al(OH)3 in the five grams of Al(OH)3 available. Al(OH)3 is in limiting, which means that all 0.19230 moles will be consumed. Accordingly, 0.19230 × 3/2 = 0.28845 moles of H₂SO₄ will be consumed.
The molar mass of H₂SO₄ is 98.706 g/mol. The mass of 0.28845 moles of H₂SO₄ is 0.28845 × 98.706 = 28.289 g
40 grams of sulfuric acid is available, out of which 28.289 grams is consumed. The remaining 40-28.289 = 11.711 g is in excess, which is closest to the first option, that is, 11.73 grams of H₂SO₄.
Answer:
Alcohol in Your Body
Alcohol reaches your brain in only five minutes, and starts to affect you within 10 minutes. After 20 minutes, your liver starts processing alcohol. On average, the liver can metabolize 1 ounce of alcohol every hour.
Explanation:
hope that helps you i just love sharing glmv sorry
Answer:
this reaction is an oxidation reaction
Answer:
Step 1 should be convert atoms to moles (n). Step 2 should be convert moles (n) to mass (m).
Step 1
Use dimensional analysis to convert the number of atoms to moles.
1 mole atoms = 6.022 × 10²³ atoms
n(Ag) = 2.3 × 10²⁴ Ag atoms × (1 mol Ag/6.022 × 10²³ Ag atoms) = 3.8193 mol Ag
Step 2
Convert the moles of Ag to mass.
mass (m) = moles (n) × molar mass (M)
n(Ag) = 3.8193 mol Ag
M(Ag) = atomic weight on the periodic table in g/mol = 107.868 g Ag/mol Ag
m(Ag) = 3.8193 mol × 107.868 g/mol = 412 g Ag = 410 g Ag rounded to two significant figures
The mass of 2.3 × 10²⁴ Ag atoms is approximately 410 g.
Explanation:
Answer: (D) Are there solvents mixed in (or is it water based)?