Step-by-step explanation:
B. -16 + (-7) ...this is the same as -16-7
Answer:
Recall that a relation is an <em>equivalence relation</em> if and only if is symmetric, reflexive and transitive. In order to simplify the notation we will use A↔B when A is in relation with B.
<em>Reflexive: </em>We need to prove that A↔A. Let us write J for the identity matrix and recall that J is invertible. Notice that
. Thus, A↔A.
<em>Symmetric</em>: We need to prove that A↔B implies B↔A. As A↔B there exists an invertible matrix P such that
. In this equality we can perform a right multiplication by
and obtain
. Then, in the obtained equality we perform a left multiplication by P and get
. If we write
and
we have
. Thus, B↔A.
<em>Transitive</em>: We need to prove that A↔B and B↔C implies A↔C. From the fact A↔B we have
and from B↔C we have
. Now, if we substitute the last equality into the first one we get
.
Recall that if P and Q are invertible, then QP is invertible and
. So, if we denote R=QP we obtained that
. Hence, A↔C.
Therefore, the relation is an <em>equivalence relation</em>.
i cant read it
Answer:
j
Step-by-step explanation:
The probability that Rachel will win the game is: 1/12
Step-by-step explanation:
The number cubes has six sides numbered between 1 to 6. the chances of each number are equally likely
Let S be the sample space
The sample space has 6*6 = 36 outcomes.
Now, Let A be the event that the sum of numbers on both number cubes is 10
A = {(4,6),(5,5), (6,4)
n(A) = 3

The probability that Rachel will win the game is: 1/12
Keywords: Probability, Sample
Learn more about probability at:
#LearnwithBrainly
Given:


To find:
The quadrant of the terminal side of
and find the value of
.
Solution:
We know that,
In Quadrant I, all trigonometric ratios are positive.
In Quadrant II: Only sin and cosec are positive.
In Quadrant III: Only tan and cot are positive.
In Quadrant IV: Only cos and sec are positive.
It is given that,


Here cos is positive and sine is negative. So,
must be lies in Quadrant IV.
We know that,



It is only negative because
lies in Quadrant IV. So,

After substituting
, we get





Therefore, the correct option is B.