Answer:

Explanation:
From the question we are told that:
Chemical Reactions:
X=A⇌B,ΔG= 14.8 kJ/mol
Y=B⇌C,ΔG= -29.7 kJ/mol
Z=C⇌D,ΔG= 8.10 kJ/mol
Since
Hess Law
The law states that the total enthalpy change during the complete course of a chemical reaction is independent of the number of steps taken.
Therefore
Generally the equation for the Reaction is mathematically given by

Therefore the free energy, ΔG is



All solutions are mixtures of two or more substances, but unless the mixture has a homogeneous distribution of solutes in the solvent, then the mixture is not a solution. Therefore, all mixtures are not solutions.
Answer:
The correct answer is entropy change of the surrounding plus the entropy change of the system must be positive.
Explanation:
The term entropy is a state function.Entropy can be defined as the disorder or randomness of the molecules in a system.
A spontaneous reaction is a type of reaction which deals with the release of free energy.The change of free energy in case of spontaneous reaction is always negative.
According to the second law of thermodynamics a spontaneous reaction will occur in a system if the total entropy of both system and surrounding increases during the reaction.
Answer:
See the explanation
Explanation:
In this case, we have to keep in mind that in the monosubstituted product we only have to replace 1 hydrogen with another group. In this case, we are going to use the methyl group
.
In the axial position, we have a more steric hindrance because we have two hydrogens near to the
group. If we have <u>more steric hindrance</u> the molecule would be <u>more unstable</u>. In the equatorial positions, we don't <u>any interactions</u> because the
group is pointing out. If we don't have <u>any steric hindrance</u> the molecule will be <u>more stable</u>, that's why the molecule will <u>the equatorial position.</u>
See figure 1
I hope it helps!