The rate constant : k = 9.2 x 10⁻³ s⁻¹
The half life : t1/2 = 75.3 s
<h3>Further explanation</h3>
Given
Reaction 45% complete in 65 s
Required
The rate constant and the half life
Solution
For first order ln[A]=−kt+ln[A]o
45% complete, 55% remains
A = 0.55
Ao = 1
Input the value :
ln A = -kt + ln Ao
ln 0.55 = -k.65 + ln 1
-0.598=-k.65
k = 9.2 x 10⁻³ s⁻¹
The half life :
t1/2 = (ln 2) / k
t1/2 = 0.693 : 9.2 x 10⁻³
t1/2 = 75.3 s
Answer:
"1.4 mL" is the appropriate solution.
Explanation:
According to the question,
Now,
Increase in volume will be:
⇒ 
By putting the given values, we get



<u>Answer:</u> The temperature to which the gas in the syringe must be heated is 720.5 K
<u>Explanation:</u>
To calculate the volume when temperature and pressure has changed, we use the equation given by combined gas law.
The equation follows:

where,
are the initial pressure, volume and temperature of the gas
are the final pressure, volume and temperature of the gas
We are given:

Putting values in above equation, we get:

Hence, the temperature to which the gas in the syringe must be heated is 720.5 K
To calculate the new pressure, we can use Boyle’s law to relate these two scenarios (Boyle’s law is used because the temperature is assumed to remain constant). Boyle’s law is:
P1V1 = P2V2,
Where “P” is pressure and “V” is volume. The pressure and volume of the first scenario is 215 torr and 51 mL, respectively, and the second scenario has a volume of 18.5 L (18,500 mL) and the unknown pressure - let’s call that “x”. Plugging these into the equation:
(215 torr)(51 mL) =(“x” torr)(18,500 mL)
x = 0.593 torr
The final pressure exerted by the gas would be 0.593 torr.
Hope this helps!
The reaction between hydrogen and oxygen to form water is given as:

The balanced reaction is:

According to the balanced reaction,
4 g of hydrogen (
) reacts with 32 g of oxygen (
).
So, oxygen reacted with 29.4 g of hydrogen is:

Hence, the mass of oxygen that is reacted with 29.4 g of hydrogen is 235.2 g.