(2n2 + 4n + 4)(4n – 5)
= 8n^3 + 16n^2 +16n -10n^2 - 20n - 20
= 8n^3 +6n^2 -4n - 20
answer is d.
8n3 + 6n2 – 4n – 20
P C
3 39
4 48
5 57
6 66
9(3)=27+12=39=c
9(4)=36+12=48=c
57=9p+12
-12 -12
45=9p
divide by 9 both sides 45/9=5=p
c=9(6)+12
c=54+12
c=66
Answer:
EB=20, BC=8, AC=16
Step-by-step explanation:
The symbols indicate that:
AB=BC and AE=ED
EB and CD are parallels
AB=BC=8
AC= AB+BC
AC= 8+8
AC=16
To find EB we can use the Cosine Law
For the upper triangle x=∡EAB:
EB^2 = AB^2 + AE^2 -2*AB*AE*Cosx
AB*AE*Cosx= -(EB^2-AB^2 - AE^2)/2 (Part I)
For de big triangle:
DC^2= AC^2+AD^2 -2AC*AD*Cosx
Also:
AC=2*AB
AD=2*AE
DC^2= (2*AB)^2 + (2*AE)^2 -2(2*AB)(2*AE)*Cosx
DC^2= 4*AB^2 +4*AE^2- 8*AB*AE*Cosx
AB*AE*Cosx =-(DC^2-4*AB^2 -4*AE^2)/8 (Part II)
Part I= Part II
-(EB^2-AB^2 - AE^2)/2= -(DC^2-4*AB^2 -4*AE^2)/8
Extracting EB:
EB^2=DC^2/4
EB=DC/2
EB=40/2
EB=20