1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jok3333 [9.3K]
3 years ago
7

Determine whether the lines given in each box are parallel, perpendicular, or neither

Mathematics
1 answer:
andrey2020 [161]3 years ago
5 0

Answer/Step-by-sep explanation:

To determine whether the lines given in each box are parallel, perpendicular, or neither, take the following simple steps:

1. Ensure the equations for both lines being compared are in the slope-intercept form, y = mx + b. Where m is the slope.

2. If both lines have the same slope value, m, then both lines are parallel.

3. If the slope of one line is the negative reciprocal of the other, then both lines are perpendicular. That is, x = -1/x.

4. If the slope of both lines are not the same, nor the negative reciprocal of each other, then they are neither parallel nor perpendicular.

1. y = 3x - 7 and y = 3x + 1.

Both have the same slope value of 3. Therefore, they are parallel.

2. ⬜ y = -\frac{2}{5}x + 3 and y = \frac{2}{5}x + 8

The slope of both lines are not the same, nor is the slope of one the negative reciprocal of the other. The slope of one is -⅖ and the slope of the other is ⅖. Therefore, they are neither parallel nor perpendicular.⬜

3. y = -\frac{1}{4}x and y = 4x - 5

The slope of the first line, ¼, is the negative reciprocal of the slope of the second line, 4.

Therefore, they are perdendicular.

4. 2x + 7y = 28 and 7x - 2y = 4.

Rewrite both equations in the slope-intercept form, y = mx + b.

2x + 7y = 28

7y = -2x + 28

y = -2x/7 + 28/7

y = -²/7 + 4

And

7x - 2y = 4

-2y = -7x + 4

y = -7x/-2 + 4/-2

y = ⁷/2x - 2

The slope of the first line, -²/7, is the negative reciprocal of the slope of the second line, ⁷/2.

Therefore, they are perdendicular.

5.⬜ y = -5x + 1 and x - 5y = 30.

Rewrite the second line equation in the slope-intercept form.

x - 5y = 30

-5y = -x + 30

y = -2x/-5 + 30/-5

y = ⅖x - 6

The slope of both lines are not the same, nor is the slope of one the negative reciprocal of the other. The slope of one is -5 and the slope of the other is ⅖. therefore, they are neither parallel nor perpendicular.⬜

6.⬜ 3x + 2y = 8 and 2x + 3y = -12.

Rewrite both line equations in the slope-intercept form.

3x + 2y = 8

2y = -3x + 8

y = -3x/2 + 8/2

y = -³/2x + 4

And

2x + 3y = -12

3y = -2x -12

y = -2x/3 - 12/3

y = -⅔x - 4

The slope of both lines are not the same, nor is the slope of one the negative reciprocal of the other. The slope of one is -³/2 and the slope of the other is -⅔ therefore, they are neither parallel nor perpendicular.⬜

7. y = -4x - 1 and 8x + 2y = 14.

Rewrite the equation of the second line in the slope-intercept form.

8x + 2y = 14

2y = -8x + 14

y = -8x/2 + 14/2

y = -4x + 7

Both have the same slope value of -4. Therefore, they are parallel.

8.⬜ x + y = 7 and x - y = 9.

Rewrite the equation of both lines in the slope-intercept form.

x + y = 7

y = -x + 7

And

x - y = 9

-y = -x + 9

y = -x/-1 + 9/-1

y = x - 9

The slope of both lines are not the same, nor is the slope of one the negative reciprocal of the other. The slope of one is -1, and the slope of the other is 1, therefore, they are neither parallel nor perpendicular.⬜

9. y = ⅓x + 9 And x - 3y = 3

Rewrite the equation of the second line.

x - 3y = 3

-3y = -x + 3

y = -x/-3 + 3/-3

y = ⅓x - 1

Both have the same slope value of ⅓. Therefore, they are parallel.

10.⬜ 4x + 9y = 18 and y = 4x + 9

Rewrite the equation of the first line.

4x + 9y = 18

9y = -4x + 18

y = -4x/9 + 18/9

y = -⁴/9x + 2

The slope of both lines are not the same, nor is the slope of one the negative reciprocal of the other. The slope of one is -⁴/9, and the slope of the other is 4, therefore, they are neither parallel nor perpendicular.⬜

11.⬜ 5x - 10y = 20 and y = -2x + 6

Rewrite the equation of the first line.

5x - 10y = 20

-10y = -5x + 20

y = -5x/-10 + 20/-10

y = ²/5x - 2

The slope of both lines are not the same, nor is the slope of one the negative reciprocal of the other. The slope of one is ⅖, and the slope of the other is -2, therefore, they are neither parallel nor perpendicular.⬜

12. -9x + 12y = 24 and y = ¾x - 5

Rewrite the equation of the first line.

-9x + 12y = 24

12y = 9x + 24

y = 9x/12 + 24/12

y = ¾x + 2

Both have the same slope value of ¾. Therefore, they are parallel.

You might be interested in
Could you guys please help answer this question and also could guys show the work how you got the answer please
Allisa [31]
24 in total. 8 were solo. The test group. 24-8=16 group. 16/24=(66+2/3)%
Answer I
5 0
3 years ago
The length of a rectangle is four times its width. If the area of the rectangle is 100 in2, find its perimeter.
mamaluj [8]

Answer:

the perimeter is 50 inches squared

Step-by-step explanation:

if the length is 4 times that means the sides are 20 and 5

4 0
3 years ago
Find x please!!!!!!!!!
RSB [31]
The answer is going to be B.

7 0
3 years ago
Can anyone help me please 3t-1/4=7/8
julsineya [31]
3t − 1/4 = 7/8

Add 1/4 to both sides.

3t + −1/4 + 1/4 = 7/8 + 1/4

3t = 9/8

Divide both sides by 3.

3t/3 = 98/3

t=3/8

3 0
3 years ago
Which points are coplanar?
slega [8]
Coplanar points are three or more points that lie on the same plane. 
6 0
3 years ago
Other questions:
  • What is an equation of the line that passes through the points (−5,6) and (7, 6)
    14·1 answer
  • How to u estimate this<br> 5624 divided by 72
    6·1 answer
  • Which way does the parabola open​
    15·2 answers
  • Guys help please!!!!!
    12·1 answer
  • Please let me know what I could do
    8·1 answer
  • What is the height of parallelogram with base 6.75 and area of 218.7
    5·2 answers
  • The distance between two asteroids was calculated at 37,500,000,000 kilometers. What is this value expressed in scientific notat
    7·1 answer
  • Write the standard form of the equation of the circle with the given characteristics. Center: (3, 5); Solution point: (−2, 17)
    15·1 answer
  • Earl runs 25 meters in 10 seconds. How many meters does Earl run per second?
    8·1 answer
  • How do i do this and how do i show my work ?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!