The pressure drop of air in the bed is 14.5 kPa.
<u>Explanation:</u>
To calculate Re:

From the tables air property

Ideal gas law is used to calculate the density:
ρ = 
ρ = 1.97 Kg / 
ρ = 
R =
= 8.2 ×
/ 28.97×
R = 2.83 ×
atm / K Kg
q is expressed in the unit m/s
q = 1.24 m/s
Re =
Re = 2278
The Ergun equation is used when Re > 10,


= 4089.748 Pa/m
ΔP = 4089.748 × 3.66
ΔP = 14.5 kPa
Answer:
D. protruding steel rebars .. #answerwithquality #BAL
Uh, I’d assume so because Brainly has a whole section of questions for them.
Answer:
Explanation:
Obtain the following properties at 6MPa and 600°C from the table "Superheated water".

Obtain the following properties at 10kPa from the table "saturated water"

Calculate the enthalpy at exit of the turbine using the energy balance equation.

Since, the process is isentropic process 

Use the isentropic relations:

Calculate the enthalpy at isentropic state 2s.

a.)
Calculate the isentropic turbine efficiency.

b.)
Find the quality of the water at state 2
since
at 10KPa <
<
at 10KPa
Therefore, state 2 is in two-phase region.

Calculate the entropy at state 2.

Calculate the rate of entropy production.

since, Q = 0
