Answer:
a) 250 N/m
b) 22.4 rad/s , 3.6 Hz , 0.28 sec
c) 0.3125 J
Explanation:
a)
F = force applied on the spring = 7.50 N
x = stretch of the spring from relaxed length when force "F" is applied = 3 cm = 0.03 m
k = spring constant of the spring
Since the force applied causes the spring to stretch
F = k x
7.50 = k (0.03)
k = 250 N/m
b)
m = mass of the particle attached to the spring = 0.500 kg
Angular frequency of motion is given as


= 22.4 rad/s
= frequency
Angular frequency is also given as
= 2 π
22.4 = 2 (3.14) f
= 3.6 Hz
= Time period
Time period is given as


= 0.28 sec
c)
A = amplitude of motion = 5 cm = 0.05 m
Total energy of the spring-block system is given as
U = (0.5) k A²
U = (0.5) (250) (0.05)²
U = 0.3125 J
Answer:
0.32 m.
Explanation:
To solve this problem, we must recognise that:
1. At the maximum height, the velocity of the ball is zero.
2. When the velocity of the ball is 2.5 m/s above the ground, it is assumed that the potential energy and kinetic energy of the ball are the same.
With the above information in mind, we shall determine the height of the ball when it has a speed of 2.5 m/s. This can be obtained as follow:
Mass (m) = constant
Acceleration due to gravity (g) = 9.8 m/s²
Velocity (v) = 2.5 m/s
Height (h) =?
PE = KE
Recall:
PE = mgh
KE = ½mv²
Thus,
PE = KE
mgh = ½mv²
Cancel m from both side
gh = ½v²
9.8 × h = ½ × 2.5²
9.8 × h = ½ × 6.25
9.8 × h = 3.125
Divide both side by 9.8
h = 3.125 / 9.8
h = 0.32 m
Thus, the height of the ball when it has a speed of 2.5 m/s is 0.32 m.
Answer:
The speed of the golf ball is much greater than the speed of the bowling ball.
Explanation:
Answer:
The sky is blue because of the different gases present in the air.
Answer:
27 mph
Explanation:
9:45 to 11:45 = 2 hours
odometer says you traveled 54 miles in 2 hours or 27 mph