Answer:
The coefficients are 2 for H₂O and 1 for Ca(OH)₂.
Explanation:
Let's consider the following reaction.
Ca(OH)₂(aq) + 2 HCl(aq) → CaCl₂(aq) + 2 H₂O(l)
According to the balanced equation, the molar ratio of H₂O to Ca(OH)₂ is 2:1. Using this conversion factor, we have the following proportion:
moles Ca(OH)₂. (2 mol H₂O ÷ 1 mol Ca(OH)₂) = moles H₂O
Answer:
[NH₃] = 14.7 mol/L
Explanation:
28 wt% is a type of concentration that indicates that 28 g of ammonia is contained in 100 g of solution.
Let's determine the amount of ammonia:
28 g . 1 mol / 17.03g = 1.64 moles of NH₃
You need to consider that, when you have density's data it is always referred to solution:
Mass of solution is 100 g, let's find out the volume
0.90 g/mL = 100 g /V
V = 100 g / 0.90mL/g → 111.1 mL
We convert the volume to L → 111.1 mL . 1 L/1000mL = 0.1111 L
mol/L = 1.64 mol/0.1111L → 14.7 M
mol/L = M → molarity a sort of concentration that indicates the moles of solute in 1L of solution
<span>Scientists have determined that the center of the earth is 6371 km below the surface. But how has this been determined? Many people might answer that question by saying scientists can drill into the Earth with machines. However, the drilling rigs that scientists use can only drill about 20 km in the Earth which is not very deep! In other words, we can only drill into upper part of the crust of the earth. Extremely high temperatures and pressures within the Earth make drilling into it very difficult</span>
Electrons might be the answer