Answer:
(E) The bias will decrease and the variance will decrease.
Step-by-step explanation:
Given that researchers working the mean weight of a random sample of 800 carry-on bags to e the airline.
We have to find out the effect of increasing the sample size on variance and bias.
We know as per central limit theorem, sample mean follows a normal distribution with mean = sample mean
and std deviation of sample mean = std error =
Thus std error the square root of variance is inversely proportional to the square root of sample size.
Also whenever we increase sample size the chances of bias would decrease as the sample size becomes larger
So correct answer is both bias and variation will decrease.
(E) The bias will decrease and the variance will decrease.
Answer:
174.6 ft
Step-by-step explanation:
It can be helpful to draw a diagram of the triangle we're concerned with. (See attached.)
We know the angle at the end of the shadow inside the triangle is 52°-22° = 30°. We assume the tree is growing straight up out of the hillside, so its angle with the hill inside the triangle is 90°+22° = 112°. Then the remaining angle between the shadow and the tree at the top of the tree is ...
180° -30° -112° = 38°
Now, we have the angle opposite the tree, and the angle opposite the known side length of the triangle (215 feet along the hill, AC in the diagram). This is enough information to usefully use the Law of Sines.
c/sin(C) = a/sin(A)
c = a(sin(C)/sin(A)) = (215 ft)(sin(30°)/sin(38°)) ≈ 174.6 ft
The height of the tree is about 174.6 feet.
Hi! the numbers are 26 and 28!
26+(26+2) =54
The answer is -43
B=-1-7(6)
B=-1-42
B=-43
I have 0 idea but I need help with some questions that I have