Saturated Solution: A solution with solute that dissolves until it is unable to dissolve anymore, leaving the undissolved substances at the bottom. Unsaturated Solution: A solution ( with less solute than the saturated solution )that completely dissolves, leaving no remaining substances. Supersaturated Solution.
Answer is: volume of CO₂ is 0,113 dm³.
Ideal gas law = pV = nRT.
p = 850 PSI = 5860543,6992 Pa.
Psi <span>is the abbreviation of pound per square inch.
T = 21</span>°C = 294,15 K.
n = 0,273 mol.
R = 8,314 J/K·mol.
V = nRT ÷ p
V = 0,273 mol · 8,314 J/K·mol · 294,15 K ÷ 5860543,6992 Pa.
V = 0,00011 m³ = 0,113 dm³.
According to Raoult's law, Vapor pressure is directly proportional to the mole fraction of the solution. As 1.0 M CaF2 has least moles here, it has lowest vapor pressure.
In short, Your Answer would be Option D
Hope this helps!
Answer:
0.03g/mL
Explanation:
Given parameters include:
Five μL of a 10-to-1 dilution of a sample; This implies the Volume of dilute sample is given as 5 μL
Dilution factor = 10-to-1
The absorbance at 595 nm was 0.78
Mass of the diluted sample = 0.015 mg
We need to first determine the concentration of the diluted sample which is required in calculating the protein concentration of the original solution.
So, to determine the concentration of the diluted sample, we have:
concentration of diluted sample = 
=
(where ∝ was use in place of μ in the expressed fraction)
= 0.003 mg/μL
The dilution of the sample is from 10-to-1 indicating that the original concentration is ten times higher; as such the protein concentration of the original solution can be calculated as:
protein concentration of the original solution = 10 × concentration of the diluted sample.
= 10 × 0.003 mg/μL
= 0.03 mg/μL

= 0.03g/mL
Hence, the protein concentration of the original solution is known to be 0.03g/mL
Answer:
Im not sure how to get it off but i know if you put like some make up or foundation it will cover it.
Explanation:
Are you being abused