Given parameters:
Heat of fusion of water = 334j/g
Mass of ice = 45g
Temperature of ice = 0.0°c
Unknown:
Amount of heat needed to melt = ?
Solution:
This is simply a phase change and a latent heat is required in this process.
To solve this problem; use the mathematical expression below;
H = mL
where m is the mass
L is the heat of fusion of water;
H = 45 x 334 = 15030J
<u>We are given:</u><u>_______________________________________________</u>
Volume of Gas (V) = 2.5L
Pressure (P) = 1.2 atm
Temperature (T) = 25°C OR 25+273 = 298 K
Universal Gravitational Constant (R) = 0.0821
<u>Solving for number of moles:</u><u>___________________________________</u>
From the Ideal Gas Equation,
PV = nRT
(1.2)(2.5) = n(0.0821)(298) [plugging the given values]
n = [(1.2)(2.5)] / [0.0821*298]
n = 300 / [298*8.21]
n = 0.12 moles
Hence, there are 0.12 moles of Oxygen in 2.5L of 1.2 atm gas when the temperature is 25°C
It's a radioactive chemical element. It's symbol is AM and the atomic number is 95. It is a transuranic member of the actinide series, in the periodic table located under the lanthanide element europium, and thus by analogy was named after the Americas.
Answer:
See figure 1
Explanation:
We have to remember that in the isomer structures we have to <u>change the structure</u> but we have to maintain the <u>same formula</u>, in this case
.
In the formula, we have 1 nitrogen atom. Therefore we will have as a main functional group the <u>amine group</u>.
In the amines, we have different types of amines. Depending on the number of carbons bonded to the "N" atom. In the <em>primary amines</em>, we have only 1 C-H. In the <em>secondary amines</em>, we have two C-N bonds and in the <em>tertiary amines</em>, we have three C-N bonds.
With this in mind, we can have:
-) <u>Primary amines:</u>
1) n-butyl amine
2) sec-butyl amine including 2 optical isomers
3) isobutyl amine
4) tert-butyl amine
-) <u>Secondary amines:</u>
5) N-methyl n-propyl amine
6) N-methyl isopropyl amine
7) N, N-diethyl amine
-) <u>Tertiary amines:</u>
8) N-ethyl N, N-dimethyl amine
See figure 1
I hope it helps!